该库允许在Python中有效地读取和编写Tfrecord文件。该库还为Pytorch提供了TfreCord文件的iTerabledataSet读取器。目前支持未压缩和压缩的Gzip Tfrecords。
pip3 install 'tfrecord[torch]'
建议为每个Tfrecord文件创建一个索引文件。使用多个工人时必须提供索引文件,否则加载程序可以返回重复记录。您可以使用此实用程序程序为单个tfrecord文件创建索引文件:
python3 -m tfrecord.tools.tfrecord2idx <tfrecord path> <index path>
在目录运行中创建所有“ .tfidnex”文件的“ .tfidnex”文件:
tfrecord2idx <data dir>
使用tfrecorddataset读取pytorch中的tfrecord文件。
import torch
from tfrecord . torch . dataset import TFRecordDataset
tfrecord_path = "/tmp/data.tfrecord"
index_path = None
description = { "image" : "byte" , "label" : "float" }
dataset = TFRecordDataset ( tfrecord_path , index_path , description )
loader = torch . utils . data . DataLoader ( dataset , batch_size = 32 )
data = next ( iter ( loader ))
print ( data )使用MultitFrecordDataSet读取多个Tfrecord文件。此类从给定的tfrecord文件中的示例带有给定的概率。
import torch
from tfrecord . torch . dataset import MultiTFRecordDataset
tfrecord_pattern = "/tmp/{}.tfrecord"
index_pattern = "/tmp/{}.index"
splits = {
"dataset1" : 0.8 ,
"dataset2" : 0.2 ,
}
description = { "image" : "byte" , "label" : "int" }
dataset = MultiTFRecordDataset ( tfrecord_pattern , index_pattern , splits , description )
loader = torch . utils . data . DataLoader ( dataset , batch_size = 32 )
data = next ( iter ( loader ))
print ( data )默认情况下, MultiTFRecordDataset是无限的,这意味着它将永远采样数据。您可以通过提供适当的标志来使其有限
dataset = MultiTFRecordDataset(..., infinite=False)
当您提供队列尺寸时,TfrecordDataSet和MultitFrecordDataSet都会自动将数据供电。
dataset = TFRecordDataset(..., shuffle_queue_size=1024)
您可以选择将函数作为transform参数传递,以在返回之前执行功能的后处理。例如,这可以用于解码图像或将颜色标准化为特定范围或垫变量长度序列。
import tfrecord
import cv2
def decode_image ( features ):
# get BGR image from bytes
features [ "image" ] = cv2 . imdecode ( features [ "image" ], - 1 )
return features
description = {
"image" : "bytes" ,
}
dataset = tfrecord . torch . TFRecordDataset ( "/tmp/data.tfrecord" ,
index_path = None ,
description = description ,
transform = decode_image )
data = next ( iter ( dataset ))
print ( data ) import tfrecord
writer = tfrecord . TFRecordWriter ( "/tmp/data.tfrecord" )
writer . write ({
"image" : ( image_bytes , "byte" ),
"label" : ( label , "float" ),
"index" : ( index , "int" )
})
writer . close () import tfrecord
loader = tfrecord . tfrecord_loader ( "/tmp/data.tfrecord" , None , {
"image" : "byte" ,
"label" : "float" ,
"index" : "int"
})
for record in loader :
print ( record [ "label" ])可以使用上面显示的相同方法读取和编写sequenceExamples,并带有额外的参数(用于读取的sequence_description和sequence_datum用于写作),从而导致相应的读/写功能将数据视为sequenceExample。
import tfrecord
writer = tfrecord . TFRecordWriter ( "/tmp/data.tfrecord" )
writer . write ({ 'length' : ( 3 , 'int' ), 'label' : ( 1 , 'int' )},
{ 'tokens' : ([[ 0 , 0 , 1 ], [ 0 , 1 , 0 ], [ 1 , 0 , 0 ]], 'int' ), 'seq_labels' : ([ 0 , 1 , 1 ], 'int' )})
writer . write ({ 'length' : ( 3 , 'int' ), 'label' : ( 1 , 'int' )},
{ 'tokens' : ([[ 0 , 0 , 1 ], [ 1 , 0 , 0 ]], 'int' ), 'seq_labels' : ([ 0 , 1 ], 'int' )})
writer . close ()从序列样本yeilds读取一个包含两个元素的元组。
import tfrecord
context_description = { "length" : "int" , "label" : "int" }
sequence_description = { "tokens" : "int" , "seq_labels" : "int" }
loader = tfrecord . tfrecord_loader ( "/tmp/data.tfrecord" , None ,
context_description ,
sequence_description = sequence_description )
for context , sequence_feats in loader :
print ( context [ "label" ])
print ( sequence_feats [ "seq_labels" ])如有关Transforming Input的部分所述,可以将函数作为transform参数传递,以执行特征的后处理。对于序列特征,应该使用它,因为这些是可变的长度序列,并且需要在批处理之前填充。
import torch
import numpy as np
from tfrecord . torch . dataset import TFRecordDataset
PAD_WIDTH = 5
def pad_sequence_feats ( data ):
context , features = data
for k , v in features . items ():
features [ k ] = np . pad ( v , (( 0 , PAD_WIDTH - len ( v )), ( 0 , 0 )), 'constant' )
return ( context , features )
context_description = { "length" : "int" , "label" : "int" }
sequence_description = { "tokens" : "int " , "seq_labels" : "int" }
dataset = TFRecordDataset ( "/tmp/data.tfrecord" ,
index_path = None ,
description = context_description ,
transform = pad_sequence_feats ,
sequence_description = sequence_description )
loader = torch . utils . data . DataLoader ( dataset , batch_size = 32 )
data = next ( iter ( loader ))
print ( data )另外,您可以选择实现自定义collate_fn ,以组装批处理,例如执行动态填充。
import torch
import numpy as np
from tfrecord . torch . dataset import TFRecordDataset
def collate_fn ( batch ):
from torch . utils . data . _utils import collate
from torch . nn . utils import rnn
context , feats = zip ( * batch )
feats_ = { k : [ torch . Tensor ( d [ k ]) for d in feats ] for k in feats [ 0 ]}
return ( collate . default_collate ( context ),
{ k : rnn . pad_sequence ( f , True ) for ( k , f ) in feats_ . items ()})
context_description = { "length" : "int" , "label" : "int" }
sequence_description = { "tokens" : "int " , "seq_labels" : "int" }
dataset = TFRecordDataset ( "/tmp/data.tfrecord" ,
index_path = None ,
description = context_description ,
transform = pad_sequence_feats ,
sequence_description = sequence_description )
loader = torch . utils . data . DataLoader ( dataset , batch_size = 32 , collate_fn = collate_fn )
data = next ( iter ( loader ))
print ( data )