BERT Sequence Labeling
1.0.0
此重新播放将HuggingFaces的模型集成到端到端的管道中,以进行序列标签。这是可用型号的完整列表。
如果您发现此存储库有帮助,请给它一颗星。
git clone https://github.com/avramandrei/BERT-Sequence-Labeling.git
cd BERT-Sequence-Labeling
pip3 install -r requirements.txt
用于培训,验证和测试的文件必须采用类似于CONLL的格式:
# sent_id = email-enronsent20_01-0048
# text = Please let us know if you have additional questions.
1 Please please INTJ UH _ 2 discourse 2:discourse _
2 let let VERB VB Mood=Imp|VerbForm=Fin 0 root 0:root _
3 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 2 obj 2:obj|4:nsubj:xsubj _
4 know know VERB VB VerbForm=Inf 2 xcomp 2:xcomp _
5 if if SCONJ IN _ 7 mark 7:mark _
6 you you PRON PRP Case=Nom|Person=2|PronType=Prs 7 nsubj 7:nsubj _
7 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 advcl 4:advcl:if _
8 additional additional ADJ JJ Degree=Pos 9 amod 9:amod _
9 questions question NOUN NNS Number=Plur 7 obj 7:obj SpaceAfter=No
10 . . PUNCT . _ 2 punct 2:punct _
要训练模型,请使用train.py脚本。这将开始训练一个模型,该模型将预测[predict_column]参数指定的列的标签。
python3 train.py [path_train_file] [path_dev_file] [tokens_column] [predict_column] [lang_model_name]
要预测新值,请使用predict.py脚本。这将通过用预测值替换测试文件的预测列来创建一个新文件。
python3 predict.py [path_test_file] [model_path] [tokens_column] [predict_column] [lang_model_name]
| 模型 | UPOS | XPO |
|---|---|---|
| Bert-base cased | 95.92 | 95.27 |
| 罗伯塔基地 | 95.77 | 95.18 |
请考虑以下论文表示感谢作者:
@article{avram2020upb,
title={UPB at SemEval-2020 Task 6: Pretrained Language Models for Definition Extraction},
author={Avram, Andrei-Marius and Cercel, Dumitru-Clementin and Chiru, Costin-Gabriel},
journal={arXiv e-prints},
pages={arXiv--2009},
year={2020}
}