vecdb
v1.7
一个非常简单的矢量嵌入数据库,您可以说这是一个刊物桌子,可让您找到类似于您要搜索的项目的项目。
我是数据库爱好者,这是一个可以在生产中使用的乐趣和学习项目;)。
PS :我喜欢在空闲时间重新发明轮子,因为这是我的空闲时间!
我正在使用
{key => value}模型,
key应该是代表项目的唯一值。value应为矢量本身(浮子列表)。
默认情况下,
vecdb在当前工作目录中搜索config.yml。但是,您可以通过提供自己的自定义文件路径来使用--config /path/to/config.ymlpath/to/config.yml标志对其进行覆盖。
# http server related configs
server :
# the address to listen on in the form of '[host]:port'
listen : " 0.0.0.0:3000 "
# storage related configs
store :
# the driver you want to use
# currently vecdb supports "bolt" which is based on boltdb the in process embedded the database
driver : " bolt "
# the arguments required by the driver
# for bolt, it requires a key called `database` points to the path you want to store the data in.
args :
database : " ./vec.db "
# embeddings related configs
embedder :
# whether to enable the embedder and all endpoints using it or not
enabled : true
# the driver you want to use, currently vecdb supports gemini
driver : gemini
# the arguments required by the driver
# currently gemini driver requires `api_key` and `text_embedding_model`
args :
# by default vecdb will replace anything between ${..} with the actual value from the ENV var
api_key : " ${GEMINI_API_KEY} "
text_embedding_model : " text-embedding-004 "POST /v1/vectors/write并要将其存储在某个地方时。POST /v1/vectors/search并希望列出所有按余弦相似性以降序顺序订购的所有相似向量的键/ID。POST /v1/embeddings/text/write文本时,并希望vecdb使用配置的嵌入式(gemini)为您构建和存储向量。POST /v1/embeddings/text/search时,您有文本并希望vecdb构建矢量并搜索相似的向量键,以供您按降低顺序订购。 {
"bucket" : "BUCKET_NAME" , // consider it a collection or a table
"key" : "product-id-1" , // should be unique and represents a valid value in your main data store (example: the row id in your mysql/postgres ... etc)
"vector" : [ 1.929292 , 0.3848484 , - 1.9383838383 , ... ] // the vector you want to store
} {
"bucket" : "BUCKET_NAME" , // consider it a collection or a table
"vector" : [ 1.929292 , 0.3848484 , - 1.9383838383 , ... ] , // you will get a list ordered by cosine-similarity in descending order
"min_cosine_similarity" : 0.0 , // the more you increase, the fewer data you will get
"max_result_count" : 10 // max vectors to return (vecdb will first order by cosine similarity then apply the limit)
}如果将
embedder.enabled设置为true。
{
"bucket" : "BUCKET_NAME" , // consider it a collection or a table
"key" : "product-id-1" , // should be unique and represents a valid value in your main data store (example: the row id in your mysql/postgres ... etc)
"content" : "This is some text representing the product" // this will be converted to a vector using the configured embedder
}如果将
embedder.enabled设置为true。
{
"bucket" : "BUCKET_NAME" , // consider it a collection or a table
"content" : "A Product Text" , // you will get a list ordered by cosine-similarity in descending order
"min_cosine_similarity" : 0.0 , // the more you increase, the fewer data you will get
"max_result_count" : 10 // max vectors to return (vecdb will first order by cosine similarity then apply the limit)
}