BERT keras
1.0.0
状态:存档(提供代码为IS,没有预期的更新)
KERAS实现Google Bert(来自变形金刚的双向编码器表示)和OpenAI的Transformer LM,能够使用Finetuning API加载预审计的模型。
更新:在TPU支持的推理和培训的情况下,@highcwu都可以通过THICOLAB笔记本来进行推理和培训
# this is a pseudo code you can read an actual working example in tutorial.ipynb or the colab notebook
text_encoder = MyTextEncoder ( ** my_text_encoder_params ) # you create a text encoder (sentence piece and openai's bpe are included)
lm_generator = lm_generator ( text_encoder , ** lm_generator_params ) # this is essentially your data reader (single sentence and double sentence reader with masking and is_next label are included)
task_meta_datas = [ lm_task , classification_task , pos_task ] # these are your tasks (the lm_generator must generate the labels for these tasks too)
encoder_model = create_transformer ( ** encoder_params ) # or you could simply load_openai() or you could write your own encoder(BiLSTM for example)
trained_model = train_model ( encoder_model , task_meta_datas , lm_generator , ** training_params ) # it does both pretraing and finetuning
trained_model . save_weights ( 'my_awesome_model' ) # save it
model = load_model ( 'my_awesome_model' , encoder_model ) # load it later and use it! 尼尔