懒惰评估的查询实现,以通过受Django QuerySets启发的Python对象进行搜索。
在编程任务的许多时刻,我们必须按照正确的顺序过滤迭代物体以搜索正确的对象。我意识到大多数时间代码看起来几乎相同,但是哪种接口最容易使用?在那一刻,我发现Django QuerySets的实现非常方便且众所周知。
因此,我决定写小查询引擎,即接口将与Django相似。但它适用于Python对象。另一个假设是,将对它进行懒惰,以避免记忆消耗。
关键字参数命名格式的整个想法中继。让我们考虑按照Qualname attr1.attr2进行属性来获取或设置属性值。该发动机的执行方式类似,但我们不是通过点( . )分开的,而是通过__符号分开。因此,上面的示例可以将其转换为关键字参数名称,例如attr1__attr2 。由于事实,我们无法使用.在参数名称中。
对于某些方法,例如filter和exclude ,我们还可以指定比较器。默认情况下,这些方法正在与等价==进行比较。但是我们可以轻松地更改它。如果我们想使用<=进行比较,我们可以使用__le或__lte Postfix。因此,我们最终将以attr1__attr2__lt等参数名称。
所有受支持的比较器都在支持的比较器部分中描述。
pip install smort-query from smort_query import ObjectQuery
# or by alias
from smort_query import OQ ObjectQuery中的每种方法都会产生新的查询。这使链接非常容易。最重要的是, ObjectQuery实例未予以评估 - 这意味着即使我们链接它们,它们也不会将对象加载到内存。
查询集可以通过几种方式进行评估:
迭代:
query = ObjectQuery ( range ( 5 ))
for obj in query :
print ( obj )
"""out:
1
2
3
4
5
"""检查长度:
query = ObjectQuery ( range ( 10 ))
len ( query )
"""out:
10
"""反向查询:
query = ObjectQuery ( range ( 10 ))
query . reverse ()
"""out:
<ObjectQuery for <reversed object at 0x04E8B460>>
"""
list ( list ( query . reverse ()))
"""out
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
"""获取物品:
query = ObjectQuery ( range ( 10 ))
query [ 5 ]
"""out:
5
""" query = ObjectQuery ( range ( 10 ))
query [ 5 : 0 : - 1 ]
"""out:
<ObjectQuery for <generator object islice_extended at 0x0608B338>>
"""
list ( query [ 5 : 0 : - 1 ])
"""out:
[5, 4, 3, 2, 1]
"""初始化使用迭代器/迭代的其他对象(它仍然与正常迭代一样几乎相同):
query1 = ObjectQuery ( range ( 10 ))
query2 = ObjectQuery ( range ( 10 ))
list ( query1 )
"""out:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
"""
tuple ( query2 )
"""out:
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
"""让我们考虑为填充伪造的人类的流浪代码:
from random import randint , choice
class Human :
def __init__ ( self , name , age , sex , height , weight ):
self . name = name
self . age = age
self . sex = sex
self . height = height
self . weight = weight
def __repr__ ( self ):
return str ( self . __dict__ )
def make_random_human ( name ):
return Human (
name = name ,
age = randint ( 20 , 80 ),
sex = choice (( 'female' , 'male' )),
height = randint ( 160 , 210 ),
weight = randint ( 60 , 80 ),
)创建10个随机人:
humans = [ make_random_human ( i ) for i in range ( 10 )]
"""out:
[{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 5, 'age': 75, 'sex': 'male', 'height': 189, 'weight': 77},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""从[30; 30; 75)。为此,我们将使用专门的比较器:
list ( ObjectQuery ( humans ). filter ( age__ge = 30 , age__lt = 75 ))
"""out:
[{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""我们还可以以类似的方式排除男性:
list ( ObjectQuery ( humans ). exclude ( sex = "male" ))
"""out:
[{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""按sex属性按升序订购:
list ( ObjectQuery ( humans ). order_by ( "sex" ))
"""out
[{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78},
{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 5, 'age': 75, 'sex': 'male', 'height': 189, 'weight': 77},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72}]
"""按sex属性订购以降序的顺序:
list ( ObjectQuery ( humans ). order_by ( "-sex" ))
"""out
[{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 5, 'age': 75, 'sex': 'male', 'height': 189, 'weight': 77},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""通过多个属性订购:
list ( ObjectQuery ( humans ). order_by ( "-sex" , "height" ))
"""out:
[{'name': 5, 'age': 75, 'sex': 'male', 'height': 189, 'weight': 77},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71}]
"""如果无法手动进行过滤和订购的某些属性,我们可以即时计算它们:
# Sorry for example if someone feels offended
root_query = ObjectQuery ( humans )
only_females = root_query . filter ( sex = "female" ) # reduce objects for annotation calculation
bmi_annotated_females = only_females . annotate ( bmi = lambda obj : obj . weight / ( obj . height / 100 ) ** 2 )
overweight_females = bmi_annotated_females . filter ( bmi__gt = 25 )
overweight_females_ordered_by_age = overweight_females . order_by ( "age" )
list ( overweight_females_ordered_by_age )
"""out:
[{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71, 'bmi': 27.390918560240728},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75, 'bmi': 25.95155709342561},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78, 'bmi': 26.061679307694877}]
"""每个方法查询都是返回副本。在新创建的迭代中,迭代不会影响对象源。
root_query = ObjectQuery ( humans ). filter ( age__ge = 30 , age__lt = 75 )
query1 = root_query . filter ( weight__gt = 75 )
query2 = root_query . filter ( weight__in = [ 78 , 62 ])
list ( query1 )
"""out:
[{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""
list ( query2 )
"""out:
[{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""
list ( root_query )
"""out:
[{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""但是有时评估链条中间的某些查询可能会破坏它,因此,当您明确地想保存某个地方查询副本并确保对root上的进一步操作不会影响查询时,您可以做:
root_query = ObjectQuery ( humans )
copy = root_query . all ()您也可以反向查询,但请记住,它将评估查询:
root_query = ObjectQuery ( humans ). reverse ()
list ( root_query )
"""out:
[{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 5, 'age': 75, 'sex': 'male', 'height': 189, 'weight': 77},
{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71}]
"""钻头或将两个查询结合在一起。与union方法相同。请注意,在两个查询或更多查询之后,可能需要订购:
root_query = ObjectQuery ( humans )
males = root_query . filter ( sex = "male" )
females = root_query . filter ( sex = "female" )
both1 = ( males | females )
both2 = males . union ( females )
list ( both1 )
"""out:
[{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 5, 'age': 75, 'sex': 'male', 'height': 189, 'weight': 77},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
"""
list ( both2 )
"""out:
[{'name': 4, 'age': 73, 'sex': 'male', 'height': 174, 'weight': 62},
{'name': 5, 'age': 75, 'sex': 'male', 'height': 189, 'weight': 77},
{'name': 6, 'age': 64, 'sex': 'male', 'height': 179, 'weight': 63},
{'name': 8, 'age': 64, 'sex': 'male', 'height': 188, 'weight': 72},
{'name': 0, 'age': 24, 'sex': 'female', 'height': 161, 'weight': 71},
{'name': 1, 'age': 33, 'sex': 'female', 'height': 205, 'weight': 67},
{'name': 2, 'age': 45, 'sex': 'female', 'height': 186, 'weight': 74},
{'name': 3, 'age': 48, 'sex': 'female', 'height': 173, 'weight': 78},
{'name': 7, 'age': 35, 'sex': 'female', 'height': 170, 'weight': 75},
{'name': 9, 'age': 43, 'sex': 'female', 'height': 198, 'weight': 78}]
""" 项目支持许多可以选择的比较器作为查找的后缀:
eqeq使a == bexact使a == bin a in bcontains使b in agt使a > bgte使a >= bge使a >= blt使a < blte使a <= ble使a <= b asc()和desc()方法的工作原理与order_by()相同,但提前指定顺序。unique_justseen()和unique_everseen()方法以删除重复项。通过传递属性或委派给对象平等__eq__实现的比较。intersection()方法。通过传递属性或委派给对象平等__eq__实现的比较。__len__和__getitem__每个生命周期仅评估查询一次。 任何形式的贡献都将不胜感激。查找问题,新想法,新功能。当然,欢迎您为该项目创建PR。