This article shares the specific code of Java recursion Fibonacci sequence for your reference. The specific content is as follows
The first, common writing method
public class Demo { public static void main(String[] args) { int num1 = 1; int num2 = 1; int num3 = 0; System.out.println(num1); System.out.println(num2); for (int i = 1; i < 10; i++) { num3 = num1 + num2; num1 = num2; num2 = num3; System.out.println(num3); } }The second way to write recursive array form
public class DIGUI1 { public static void main(String[] args) { int []arr=new int[20]; arr[1]=1; arr[2]=1; System.out.print(" "+arr[1]); System.out.print(" "+arr[2]); for(int i=3;i<20;i++){ arr[i]=arr[i-1]+arr[i-2]; System.out.print(" "+arr[i]); } } }The third way of writing recursive form
public class Demo { public static int f(int n) throws Exception { if(n==0){ throw new Exception("Argument Error!"); } if (n == 1 || n == 2) { return 1; } else { return f(n-1)+f(n-2);//Call yourself} } public static void main(String[] args) throws Exception { for (int i = 1; i <=10; i++) { System.out.print(f(i)+" "); } } }The biggest problem with recursion is efficiency, but some programs must be written in recursion before they can be written. For example, if anyone can write it out in other ways, I will be convinced.
The above is all the content of this article. I hope it will be helpful to everyone's learning and I hope everyone will support Wulin.com more.