py polynomial
0.6.2
pip install py-polynomial
คลิกที่นี่สำหรับเอกสารและความช่วยเหลือที่ได้จากรหัส
>>> from polynomial import Polynomial
>>> a = Polynomial( 1 , 2 , 3 , 4 )
>>> str (a)
x^3 + 2x^2 + 3x + 4
>>> b = Polynomial([ 4 - x for x in range ( 4 )])
>>> str (b)
4x^3 + 3x^2 + 2x + 1>>> b.derivative
Polynomial(12, 6, 2)
>>> str (b.derivative)
12x^2 + 6x + 2>>> str (b.nth_derivative( 2 ))
24x + 6>>> str (a + b)
5x^3 + 5x^2 + 5x + 5>>> (a + b).calculate( 5 )
780
>>> а( 2 ) # equivalent to a.calculate(2)
26>>> p = Polynomial( 1 , 2 ) * Polynomial( 1 , 2 )
>>> p
Polynomial(1, 4, 4)>>> p[ 0 ] = - 4
>>> p
Polynomial(1, 4, -4)>>> p[ 1 :] = [ 4 , - 1 ]
>>> p
Polynomial(-1, 4, -4)>>> (p.a, p.b, p.c)
(-1, 4, -4)
>>> p.a, p.c = 1 , 4
>>> (p.A, p.B, p.C)
(1, 4, 4)>>> q, remainder = divmod (p, Polynomial( 1 , 2 ))
>>> q
Polynomial(1.0, 2.0)
>>> remainder
Polynomial()
>>> p // Polynomial( 1 , 2 )
Polynomial(1.0, 2.0)
>>> P( 1 , 2 , 3 ) % Polynomial( 1 , 2 )
Polynomial(3)>>> Polynomial( 2 , 1 ) in Polynomial( 4 , 3 , 2 , 1 )
True>>> Polynomial( 3 , 2 , 1 ).integral( 0 , 1 )
3>>> str (Polynomial( " abc " ))
ax^2 + bx + c>>> from polynomial import QuadraticTrinomial, Monomial
>>> y = QuadraticTrinomial( 1 , - 2 , 1 )
>>> str (y)
x^2 - 2x + 1
>>> y.discriminant
0
>>> y.real_roots
(1, 1)
>>> y.real_factors
(1, Polynomial(1, -1), Polynomial(1, -1))
>>> str (Monomial( 5 , 3 ))
5x^3
>>> y += Monomial( 9 , 2 )
>>> y
Polynomial(10, -2, 1)
>>> str (y)
10x^2 - 2x + 1
>>> (y.a, y.b, y.c)
(10, -2, 1)
>>> (y.A, y.B, y.C)
(10, -2, 1)
>>> y.complex_roots
((0.1 + 0.3j), (0.1 - 0.3j))