Примеры полного текста Postgres Полный текстовый поиск (Tsearch, Trigram, Ilike).
ilikeilike поддерживаемого индексом Trigram >> CREATE DATABASE ftdb; Чтобы подписать DB с помощью примера набора данных ( dataset.txt , 100K строк, 15 слов каждый), я использовал сценарий python init_db.py .
ilike >> EXPLAIN ANALYZE
SELECT text , language
FROM public . document
WHERE
text ilike ' %field% '
AND text ilike ' %window% '
AND text ilike ' %lamp% '
AND text ilike ' %research% '
AND language = ' en '
LIMIT 1 ;
QUERY PLAN
-- --------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost = 0 . 00 .. 3734 . 02 rows = 1 width = 105 ) (actual time = 87 . 473 .. 87 . 474 rows = 0 loops = 1 )
- > Seq Scan on document (cost = 0 . 00 .. 3734 . 02 rows = 1 width = 105 ) (actual time = 87 . 466 .. 87 . 466 rows = 0 loops = 1 )
Filter: (( text ~~ * ' %field% ' :: text ) AND ( text ~~ * ' %window% ' :: text ) AND ( text ~~ * ' %lamp% ' :: text ) AND ( text ~~ * ' %research% ' :: text ))
Rows Removed by Filter: 100001
Planning Time : 2 . 193 ms
Execution Time : 87 . 500 msilike поддерживаемого индексом TrigramЧто такое триграмма? Смотрите этот пример:
>> CREATE EXTENSION pg_trgm;
CREATE EXTENSION
>> select show_trgm( ' fielded ' );
show_trgm
-- ---------------------------------------
{ " f " , " fi " ,ded, " ed " ,eld,fie,iel,lde} Мы можем улучшить производительность ilike используя индекс триграммы, например, gin_trgm_ops .
>> CREATE INDEX ix_document_text_trigram ON document USING gin ( text gin_trgm_ops) where language = ' en ' ;
CREATE INDEX
>> EXPLAIN ANALYZE SELECT text , language
FROM public . document
WHERE
text ilike ' %field% '
AND text ilike ' %window% '
AND text ilike ' %lamp% '
AND text ilike ' %research% '
AND language = ' en '
LIMIT 1 ;
QUERY PLAN
-- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost = 176 . 00 .. 180 . 02 rows = 1 width = 105 ) (actual time = 1 . 473 .. 1 . 474 rows = 0 loops = 1 )
- > Bitmap Heap Scan on document (cost = 176 . 00 .. 180 . 02 rows = 1 width = 105 ) (actual time = 1 . 470 .. 1 . 471 rows = 0 loops = 1 )
Recheck Cond: (( text ~~ * ' %field% ' :: text ) AND ( text ~~ * ' %window% ' :: text ) AND ( text ~~ * ' %lamp% ' :: text ) AND ( text ~~ * ' %research% ' :: text ) AND ((language):: text = ' en ' :: text ))
- > Bitmap Index Scan on ix_document_text_trigram (cost = 0 . 00 .. 176 . 00 rows = 1 width = 0 ) (actual time = 1 . 466 .. 1 . 466 rows = 0 loops = 1 )
Index Cond: (( text ~~ * ' %field% ' :: text ) AND ( text ~~ * ' %window% ' :: text ) AND ( text ~~ * ' %lamp% ' :: text ) AND ( text ~~ * ' %research% ' :: text ))
Planning Time : 2 . 389 ms
Execution Time : 1 . 524 msPostgres не предоставляет поддержку многим языкам по умолчанию. Тем не менее, вы можете довольно легко настроить конфигурацию. Вам просто нужны дополнительные файлы словаря. Вот пример для польского языка. Файлы польского словаря могут быть загружены с: https://github.com/judehunter/polish-tsearch.
Plock.affix, poly.stop и Plock.dict Файлы должны быть скопированы в Postgresql sharedir tsearch_data местоположение, например /usr/share/postgresql/13/tsearch_data . Чтобы определить местоположение Sharedir, вы можете использовать pg_config --sharedir
Также должна быть создана конфигурация (см. Документы) внутри базы данных:
>> DROP TEXT SEARCH DICTIONARY IF EXISTS polish_hunspell CASCADE;
CREATE TEXT SEARCH DICTIONARY polish_hunspell (
TEMPLATE = ispell,
DictFile = polish,
AffFile = polish,
StopWords = polish
);
CREATE TEXT SEARCH CONFIGURATION public . polish (
COPY = pg_catalog . english
);
ALTER TEXT SEARCH CONFIGURATION polish
ALTER MAPPING
FOR
asciiword, asciihword, hword_asciipart, word, hword, hword_part
WITH
polish_hunspell, simple;
Вам нужны эти файлы и конфигурация, потому что полная текстовая поисковая система использует Lexeme, сравнивая для поиска лучших совпадений (как шаблон запроса, так и хранимый текст лексализированы):
>> SELECT to_tsquery( ' english ' , ' fielded ' ), to_tsvector( ' english ' , text )
FROM document
LIMIT 1 ;
to_tsquery | to_tsvector
-- ----------+----------------------------------------------------------------------------------------------------------------------------------------------------
' field ' | ' 19 ' : 16 ' bat ' : 12 ' dead ' : 8 ' degre ' : 1 ' depth ' : 5 ' field ' : 15 ' lamp ' : 13 ' men ' : 6 ' put ' : 14 ' ranch ' : 2 ' tall ' : 4 ' time ' : 3 ' underlin ' : 11 ' wast ' : 10 ' window ' : 9Если вы не можете предоставить файлы словаря, вы можете использовать полный текст в «простой» форме (без преобразования в Lexeme):
>> SELECT to_tsquery( ' simple ' , ' fielded ' ), to_tsvector( ' simple ' , text )
FROM document
LIMIT 1 ;
to_tsquery | to_tsvector
-- ----------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------
' fielded ' | ' 19 ' : 16 ' bat ' : 12 ' below ' : 7 ' dead ' : 8 ' degree ' : 1 ' depth ' : 5 ' field ' : 15 ' lamp ' : 13 ' men ' : 6 ' putting ' : 14 ' ranch ' : 2 ' tall ' : 4 ' time ' : 3 ' underline ' : 11 ' waste ' : 10 ' window ' : 9 >> EXPLAIN ANALYZE SELECT text , language
FROM public . document
WHERE to_tsvector( ' english ' , text ) @@ to_tsquery( ' english ' , ' fielded & window & lamp & depth & test ' )
LIMIT 1 ;
QUERY PLAN
-- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost = 1000 . 00 .. 18298 . 49 rows = 1 width = 103 ) (actual time = 489 . 802 .. 491 . 352 rows = 0 loops = 1 )
- > Gather (cost = 1000 . 00 .. 18298 . 49 rows = 1 width = 103 ) (actual time = 489 . 800 .. 491 . 349 rows = 0 loops = 1 )
Workers Planned: 1
Workers Launched: 1
- > Parallel Seq Scan on document (cost = 0 . 00 .. 17298 . 39 rows = 1 width = 103 ) (actual time = 486 . 644 .. 486 . 644 rows = 0 loops = 2 )
Filter: (((language):: text = ' en ' :: text ) AND (to_tsvector( ' english ' ::regconfig, text ) @@ ' ' ' field ' ' & ' ' window ' ' & ' ' lamp ' ' & ' ' depth ' ' & ' ' test ' ' ' ::tsquery))
Rows Removed by Filter: 50000
Planning Time : 0 . 272 ms
Execution Time : 491 . 376 ms
( 9 rows)Частичный индекс дает возможность хранить записи на разных языках, используя одну таблицу, и эффективно запросить их.
>> CREATE INDEX ix_en_document_tsvector_text ON public . document USING gin (to_tsvector( ' english ' ::regconfig, text )) WHERE language = ' en ' ;
CREATED INDEX
>> EXPLAIN ANALYZE SELECT text , language
FROM public . document
WHERE to_tsvector( ' english ' , text ) @@ to_tsquery( ' english ' , ' fielded & window & lamp & depth & test ' )
LIMIT 1 ;
QUERY PLAN
-- --------------------------------------------------------------------------------------------------------------------------------------
Limit (cost = 1000 . 00 .. 18151 . 43 rows = 1 width = 103 ) (actual time = 487 . 120 .. 488 . 569 rows = 0 loops = 1 )
- > Gather (cost = 1000 . 00 .. 18151 . 43 rows = 1 width = 103 ) (actual time = 487 . 117 .. 488 . 567 rows = 0 loops = 1 )
Workers Planned: 1
Workers Launched: 1
- > Parallel Seq Scan on document (cost = 0 . 00 .. 17151 . 33 rows = 1 width = 103 ) (actual time = 484 . 418 .. 484 . 419 rows = 0 loops = 2 )
Filter: (to_tsvector( ' english ' ::regconfig, text ) @@ ' ' ' field ' ' & ' ' window ' ' & ' ' lamp ' ' & ' ' depth ' ' & ' ' test ' ' ' ::tsquery)
Rows Removed by Filter: 50000
Planning Time : 0 . 193 ms
Execution Time : 488 . 596 msНет разницы? Индекс не использовался ... почему он не работает? Ооо, смотрит на документы частичного индекса:
Однако имейте в виду, что предикат должен соответствовать условиям, используемым в запросах, которые должны извлечь выгоду из индекса. Чтобы быть точным, частичный индекс может использоваться в запросе только в том случае, если система может признать, что условие того, где запрос математически подразумевает предикат индекса. PostgreSQL не имеет сложной пошлин теорема, которая может распознавать математически эквивалентные выражения, которые написаны в разных формах. (Не только такая общая пошлина теорема чрезвычайно трудно создать, но и слишком медленно, чтобы иметь реальное использование.) Система может распознавать простые последствия неравенства, например, «x <1» подразумевает «x <2»; В противном случае условие предиката должно точно соответствовать части запроса, где условие или индекс не будут распознаваться как использование. Сопоставление происходит во время планирования запросов, а не во время выполнения. В результате, параметризованные положения запросов не работают с частичным индексом.
Мы должны добавить к запросу условия, которое использовалось для создания частичного индекса: document.language = 'en' :
>> EXPLAIN ANALYZE SELECT text , language
FROM public . document
WHERE
to_tsvector( ' english ' , text ) @@ to_tsquery( ' english ' , ' fielded & window & lamp & depth & test ' )
AND language = ' en '
LIMIT 1 ; QUERY PLAN
-- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost = 64 . 00 .. 68 . 27 rows = 1 width = 103 ) (actual time = 0 . 546 .. 0 . 548 rows = 0 loops = 1 )
- > Bitmap Heap Scan on document (cost = 64 . 00 .. 68 . 27 rows = 1 width = 103 ) (actual time = 0 . 544 .. 0 . 545 rows = 0 loops = 1 )
Recheck Cond: ((to_tsvector( ' english ' ::regconfig, text ) @@ ' ' ' field ' ' & ' ' window ' ' & ' ' lamp ' ' & ' ' depth ' ' & ' ' test ' ' ' ::tsquery) AND ((language):: text = ' en ' :: text ))
- > Bitmap Index Scan on ix_en_document_tsvector_text (cost = 0 . 00 .. 64 . 00 rows = 1 width = 0 ) (actual time = 0 . 540 .. 0 . 540 rows = 0 loops = 1 )
Index Cond: (to_tsvector( ' english ' ::regconfig, text ) @@ ' ' ' field ' ' & ' ' window ' ' & ' ' lamp ' ' & ' ' depth ' ' & ' ' test ' ' ' ::tsquery)
Planning Time : 0 . 244 ms
Execution Time : 0 . 590 ms :* Оператор включает поиск префикса. Может быть полезно выполнить полный текстовый поиск во время ввода слова.
>> EXPLAIN ANALYZE SELECT text , language
FROM public . document
WHERE
to_tsvector( ' english ' , text ) @@ to_tsquery( ' english ' , ' fielded & window & l:* ' )
AND language = ' en '
LIMIT 1 ;
QUERY PLAN
-- ----------------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on document (cost = 168 . 00 .. 172 . 27 rows = 1 width = 102 ) (actual time = 5 . 207 .. 5 . 210 rows = 4 loops = 1 )
Recheck Cond: ((to_tsvector( ' english ' ::regconfig, text ) @@ ' ' ' field ' ' & ' ' window ' ' & ' ' l ' ' :* ' ::tsquery) AND ((language):: text = ' en ' :: text ))
Heap Blocks: exact = 4
- > Bitmap Index Scan on ix_en_document_tsvector_text (cost = 0 . 00 .. 168 . 00 rows = 1 width = 0 ) (actual time = 5 . 202 .. 5 . 202 rows = 4 loops = 1 )
Index Cond: (to_tsvector( ' english ' ::regconfig, text ) @@ ' ' ' field ' ' & ' ' window ' ' & ' ' l ' ' :* ' ::tsquery)
Planning Time : 0 . 240 ms
Execution Time : 5 . 240 ms
>> SELECT id, text
FROM public . document
WHERE
to_tsvector( ' english ' , text ) @@ to_tsquery( ' english ' , ' fielded & window & l:* ' )
AND language = ' en '
LIMIT 20 ;
id | text
-- -----+-----------------------------------------------------------------------------------------------------------
1 | degree ranch time tall depth men below dead window waste underline bat lamp putting field +
20152 | Law pony follow memory star whatever window sets oxygen longer word whom glass field actual +
21478 | Dried symbol willing design managed shade window pick share faster education drive field land everybody +
30293 | Pencil seen engineer labor image entire smallest serve field should riding smaller window imagine traffic +
Есть две довольно похожие функции, чтобы ранжировать результаты TSEARCH:
ts_rank , который оценивает векторы на основе частоты их соответствующих лексиковts_rank_cd , который вычисляет рейтинг «Плотность покрытия»Для получения дополнительной информации см. Документы
>> SELECT
id,
ts_rank_cd(to_tsvector( ' english ' , text ), to_tsquery( ' english ' , ' fielded & wind:* ' )) rank,
text
FROM public . document
WHERE to_tsvector( ' english ' , text ) @@ to_tsquery( ' english ' , ' fielded & wind:* ' )
ORDER BY rank DESC
LIMIT 20 ;
id | rank | text
-- ------+-------------+-----------------------------------------------------------------------------------------------------------
100002 | 0 . 1 | fielded window
9376 | 0 . 05 | Own mouse girl effect surprise physical newspaper forgot eat upper field element window simply unhappy +
96597 | 0 . 05 | Opinion fastened pencil rear more theory size window heading field understanding farm up position attack +
44626 | 0 . 033333335 | Symbol each halfway window swam spider field page shinning donkey chose until cow cabin congress +
80922 | 0 . 033333335 | Victory famous field shelter girl wind adventure he divide rear tip few studied ruler judge +
30293 | 0 . 025 | Pencil seen engineer labor image entire smallest serve field should riding smaller window imagine traffic +
1 | 0 . 016666668 | degree ranch time tall depth men below dead window waste underline bat lamp putting field +
21478 | 0 . 016666668 | Dried symbol willing design managed shade window pick share faster education drive field land everybody +
60059 | 0 . 016666668 | However hungry make proud kids come willing field officer row above highest round wind mile +
26001 | 0 . 014285714 | Earth earlier pocket might sense window way frog fire court family mouth field somebody recognize +
20152 | 0 . 014285714 | Law pony follow memory star whatever window sets oxygen longer word whom glass field actual +
37470 | 0 . 0125 | Farm weight balloon buried wind water donkey grain pig week should damage field was he +
49433 | 0 . 01 | Wind scientist leaving atom year bad child drink shore spirit field facing indicate wagon here +
37851 | 0 . 007142857 | Field cloud you wife rhythm upward applied weigh continued property replace ahead forgotten trip window +
text='fielded window' была добавлена вручную, чтобы показать лучший результат совпадения.
Мы создали индекс джина. Но есть также вариант индекса GIST. Какой из них лучше? Это зависит...
>> EXPLAIN ANALYZE SELECT text , language
FROM public . document
WHERE
to_tsvector( ' english ' , text ) @@ to_tsquery( ' english ' , ' fielded & window & lamp & depth & test ' )
AND language = ' en '
LIMIT 1 ;
QUERY PLAN
-- ---------------------------------------------------------------------------------------------------------------------------------------------
Limit (cost = 0 . 28 .. 8 . 30 rows = 1 width = 103 ) (actual time = 2 . 699 .. 2 . 700 rows = 0 loops = 1 )
- > Index Scan using ix_en_document_tsvector_text on document (cost = 0 . 28 .. 8 . 30 rows = 1 width = 103 ) (actual time = 2 . 697 .. 2 . 697 rows = 0 loops = 1 )
Index Cond: (to_tsvector( ' english ' ::regconfig, text ) @@ ' ' ' field ' ' & ' ' window ' ' & ' ' lamp ' ' & ' ' depth ' ' & ' ' test ' ' ' ::tsquery)
Planning Time : 0 . 274 ms
Execution Time : 2 . 730 msДжин кажется немного быстрее. Я не думаю, что мог бы объяснить это лучше, чем документы уже делают:
При выборе того, какой тип индекса использовать, GIST или джин, рассмотрите эти различия в производительности:
- Поиск индекса джина примерно в три раза быстрее, чем суть
- Индексы джина занимают примерно в три раза дольше, чем GIST
- Индексы джина умеренно медленнее, чем обновление, чем индексы GIST, но примерно в 10 раз медленнее, если поддержка Fast-Update была отключена (подробности см. В разделе 58.4.1)
- Индексы джина в два-три раза больше, чем индексы GIST