Этот модуль может использоваться для замены ключевых слов в предложениях или извлечения ключевых слов из предложений. Он основан на алгоритме FlashText.
$ pip установить FlashText
Документацию можно найти на FlashText Read The Docs.
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> # keyword_processor.add_keyword(<unclean name>, <standardised name>)
>>> keyword_processor.add_keyword( ' Big Apple ' , ' New York ' )
>>> keyword_processor.add_keyword( ' Bay Area ' )
>>> keywords_found = keyword_processor.extract_keywords( ' I love Big Apple and Bay Area. ' )
>>> keywords_found
>>> # ['New York', 'Bay Area']>>> keyword_processor.add_keyword( ' New Delhi ' , ' NCR region ' )
>>> new_sentence = keyword_processor.replace_keywords( ' I love Big Apple and new delhi. ' )
>>> new_sentence
>>> # 'I love New York and NCR region.'>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor( case_sensitive = True )
>>> keyword_processor.add_keyword( ' Big Apple ' , ' New York ' )
>>> keyword_processor.add_keyword( ' Bay Area ' )
>>> keywords_found = keyword_processor.extract_keywords( ' I love big Apple and Bay Area. ' )
>>> keywords_found
>>> # ['Bay Area']>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword( ' Big Apple ' , ' New York ' )
>>> keyword_processor.add_keyword( ' Bay Area ' )
>>> keywords_found = keyword_processor.extract_keywords( ' I love big Apple and Bay Area. ' , span_info = True )
>>> keywords_found
>>> # [('New York', 7, 16), ('Bay Area', 21, 29)]>>> from flashtext import KeywordProcessor
>>> kp = KeywordProcessor()
>>> kp.add_keyword( ' Taj Mahal ' , ( ' Monument ' , ' Taj Mahal ' ))
>>> kp.add_keyword( ' Delhi ' , ( ' Location ' , ' Delhi ' ))
>>> kp.extract_keywords( ' Taj Mahal is in Delhi. ' )
>>> # [('Monument', 'Taj Mahal'), ('Location', 'Delhi')]
>>> # NOTE : replace_keywords feature won't work with this.>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword( ' Big Apple ' )
>>> keyword_processor.add_keyword( ' Bay Area ' )
>>> keywords_found = keyword_processor.extract_keywords( ' I love big Apple and Bay Area. ' )
>>> keywords_found
>>> # ['Big Apple', 'Bay Area']>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_dict = {
>>> " java " : [ " java_2e " , " java programing " ],
>>> " product management " : [ " PM " , " product manager " ]
>>> }
>>> # {'clean_name': ['list of unclean names']}
>>> keyword_processor.add_keywords_from_dict(keyword_dict)
>>> # Or add keywords from a list:
>>> keyword_processor.add_keywords_from_list([ " java " , " python " ])
>>> keyword_processor.extract_keywords( ' I am a product manager for a java_2e platform ' )
>>> # output ['product management', 'java']>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_dict = {
>>> " java " : [ " java_2e " , " java programing " ],
>>> " product management " : [ " PM " , " product manager " ]
>>> }
>>> keyword_processor.add_keywords_from_dict(keyword_dict)
>>> print (keyword_processor.extract_keywords( ' I am a product manager for a java_2e platform ' ))
>>> # output ['product management', 'java']
>>> keyword_processor.remove_keyword( ' java_2e ' )
>>> # you can also remove keywords from a list/ dictionary
>>> keyword_processor.remove_keywords_from_dict({ " product management " : [ " PM " ]})
>>> keyword_processor.remove_keywords_from_list([ " java programing " ])
>>> keyword_processor.extract_keywords( ' I am a product manager for a java_2e platform ' )
>>> # output ['product management']>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_dict = {
>>> " java " : [ " java_2e " , " java programing " ],
>>> " product management " : [ " PM " , " product manager " ]
>>> }
>>> keyword_processor.add_keywords_from_dict(keyword_dict)
>>> print ( len (keyword_processor))
>>> # output 4>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword( ' j2ee ' , ' Java ' )
>>> ' j2ee ' in keyword_processor
>>> # output: True
>>> keyword_processor.get_keyword( ' j2ee ' )
>>> # output: Java
>>> keyword_processor[ ' colour ' ] = ' color '
>>> keyword_processor[ ' colour ' ]
>>> # output: color>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword( ' j2ee ' , ' Java ' )
>>> keyword_processor.add_keyword( ' colour ' , ' color ' )
>>> keyword_processor.get_all_keywords()
>>> # output: {'colour': 'color', 'j2ee': 'Java'}Для обнаружения границы слов в настоящее время любой символ, кроме этого w [a-za-z0-9_], считается границей слов.
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> keyword_processor.add_keyword( ' Big Apple ' )
>>> print (keyword_processor.extract_keywords( ' I love Big Apple/Bay Area. ' ))
>>> # ['Big Apple']
>>> keyword_processor.add_non_word_boundary( ' / ' )
>>> print (keyword_processor.extract_keywords( ' I love Big Apple/Bay Area. ' ))
>>> # [] $ git clone https://github.com/vi3k6i5/flashtext $ CD FlashText $ pip установить pytest $ python setup.py test
$ git clone https://github.com/vi3k6i5/flashtext $ CD FlashText/Docs $ pip установить Sphinx $ сделать HTML $ # open _build/html/index.html в браузере, чтобы просмотреть его локально
Это пользовательский алгоритм, основанный на алгоритме AHO-Corasick и словаре Trie.

Время, занятое FlashText, чтобы найти термины по сравнению с Regex.
Время, занятое FlashText, чтобы заменить термины по сравнению с Regex.
Ссылка на код для сравнения функции Find и заменить функцию.
Идея этой библиотеки возникла из следующего вопроса Stackoverflow.
Оригинальная статья, опубликованная на алгоритме FlashText.
@Article {2017ARXIV171100046S,
Автор = {{singh}, V.},
title = "{заменить или получить ключевые слова в документах в масштабе}",
Journal = {arxiv e-prints},
ArchivePrefix = "arxiv",
eprint = {1711.00046},
PrimaryClass = "cs.ds",
Keywords = {компьютерные науки - структуры данных и алгоритмы},
год = 2017,
месяц = октябрь,
adsurl = {http://adsabs.harvard.edu/abs/2017arxiv171100046S},
adsnote = {предоставлена система данных SAO/NASA Astrophysics}
}
Статья, опубликованная на Medium Freecodecamp.
Проект лицензирован по лицензии MIT.