Наташа решает основные задачи NLP для российского языка: токенизация, сегментация предложений, встраивание слов, тегингинг морфологии, лемматизация, нормализация фразы, синтаксис -анализ, метки NER, извлечение фактов. Качество для каждой задачи одинаково или лучше, чем текущие SOTA для российского языка на новостных статьях, см. Раздел оценки. Наташа не является исследовательским проектом, базовые технологии создаются для производства. Мы обращаем внимание на размер модели, использование RAM и производительность. Модели работают на процессоре, используйте Numpy для вывода.
Наташа интегрирует библиотеки из проекта Natasha под одним удобным API:
API может измениться, для задач реального мира рассмотрим использование библиотек низкого уровня из проекта Natasha. Модели, оптимизированные для новостных статей, качество в другом домене может быть ниже. Для использования старого
NamesExtractor,AddressExtactorпонижатьpip install natasha<1 yargy<0.13
Наташа поддерживает Python 3.7+ и PYPY3:
$ pip install natasha Импорт, инициализировать модули, создать объект Doc .
> >> from natasha import (
Segmenter ,
MorphVocab ,
NewsEmbedding ,
NewsMorphTagger ,
NewsSyntaxParser ,
NewsNERTagger ,
PER ,
NamesExtractor ,
Doc
)
> >> segmenter = Segmenter ()
> >> morph_vocab = MorphVocab ()
> >> emb = NewsEmbedding ()
> >> morph_tagger = NewsMorphTagger ( emb )
> >> syntax_parser = NewsSyntaxParser ( emb )
> >> ner_tagger = NewsNERTagger ( emb )
> >> names_extractor = NamesExtractor ( morph_vocab )
> >> text = 'Посол Израиля на Украине Йоэль Лион признался, что пришел в шок, узнав о решении властей Львовской области объявить 2019 год годом лидера запрещенной в России Организации украинских националистов (ОУН) Степана Бандеры. Свое заявление он разместил в Twitter. «Я не могу понять, как прославление тех, кто непосредственно принимал участие в ужасных антисемитских преступлениях, помогает бороться с антисемитизмом и ксенофобией. Украина не должна забывать о преступлениях, совершенных против украинских евреев, и никоим образом не отмечать их через почитание их исполнителей», — написал дипломат. 11 декабря Львовский областной совет принял решение провозгласить 2019 год в регионе годом Степана Бандеры в связи с празднованием 110-летия со дня рождения лидера ОУН (Бандера родился 1 января 1909 года). В июле аналогичное решение принял Житомирский областной совет. В начале месяца с предложением к президенту страны Петру Порошенко вернуть Бандере звание Героя Украины обратились депутаты Верховной Рады. Парламентарии уверены, что признание Бандеры национальным героем поможет в борьбе с подрывной деятельностью против Украины в информационном поле, а также остановит «распространение мифов, созданных российской пропагандой». Степан Бандера (1909-1959) был одним из лидеров Организации украинских националистов, выступающей за создание независимого государства на территориях с украиноязычным населением. В 2010 году в период президентства Виктора Ющенко Бандера был посмертно признан Героем Украины, однако впоследствии это решение было отменено судом. '
> >> doc = Doc ( text ) Разделите текст на токены и послания. Определяет tokens и свойства sents doc . Использует Razdel внутренне.
> >> doc . segment ( segmenter )
> >> print ( doc . tokens [: 5 ])
> >> print ( doc . sents [: 5 ])
[ DocToken ( stop = 5 , text = 'Посол' ),
DocToken ( start = 6 , stop = 13 , text = 'Израиля' ),
DocToken ( start = 14 , stop = 16 , text = 'на' ),
DocToken ( start = 17 , stop = 24 , text = 'Украине' ),
DocToken ( start = 25 , stop = 30 , text = 'Йоэль' )]
[ DocSent ( stop = 218 , text = ' Посол Израиля на Украине Йоэль Лион признался , чт ..., tokens = [...]),
DocSent ( start = 219 , stop = 257 , text = 'Свое заявление он разместил в Twitter.' , tokens = [...]),
DocSent ( start = 258 , stop = 424 , text = '« Я не могу понять , как прославление тех , кто непо ..., tokens = [...]),
DocSent ( start = 425 , stop = 592 , text = ' Украина не должна забывать о преступлениях , совер ..., tokens = [...]),
DocSent ( start = 593 , stop = 798 , text = ' 11 декабря Львовский областной совет принял решен ..., tokens = [...])] Для каждого токенового экстракта насыщенных морфологических тегов. Зависит от этапа сегментации. Определяет pos и feats свойства doc.tokens . Использует модель морфологии Slovnet внутри.
Позвоните morph.print() , чтобы визуализировать наценку морфологии.
> >> doc . tag_morph ( morph_tagger )
> >> print ( doc . tokens [: 5 ])
> >> doc . sents [ 0 ]. morph . print ()
[ DocToken ( stop = 5 , text = 'Посол' , pos = 'NOUN' , feats = < Anim , Nom , Masc , Sing > ),
DocToken ( start = 6 , stop = 13 , text = 'Израиля' , pos = 'PROPN' , feats = < Inan , Gen , Masc , Sing > ),
DocToken ( start = 14 , stop = 16 , text = 'на' , pos = 'ADP' ),
DocToken ( start = 17 , stop = 24 , text = 'Украине' , pos = 'PROPN' , feats = < Inan , Loc , Fem , Sing > ),
DocToken ( start = 25 , stop = 30 , text = 'Йоэль' , pos = 'PROPN' , feats = < Anim , Nom , Masc , Sing > )]
Посол NOUN | Animacy = Anim | Case = Nom | Gender = Masc | Number = Sing
Израиля PROPN | Animacy = Inan | Case = Gen | Gender = Masc | Number = Sing
на ADP
Украине PROPN | Animacy = Inan | Case = Loc | Gender = Fem | Number = Sing
Йоэль PROPN | Animacy = Anim | Case = Nom | Gender = Masc | Number = Sing
Лион PROPN | Animacy = Anim | Case = Nom | Gender = Masc | Number = Sing
признался VERB | Aspect = Perf | Gender = Masc | Mood = Ind | Number = Sing | Tense = Past | VerbForm = Fin | Voice = Mid
, PUNCT
что SCONJ
... Легматизировать каждый токен. Зависит от шага морфологии. Определяет свойство lemma doc.tokens . Использует Pymorphy внутри.
> >> for token in doc . tokens :
> >> token . lemmatize ( morph_vocab )
> >> print ( doc . tokens [: 5 ])
> >> { _ . text : _ . lemma for _ in doc . tokens }
[ DocToken ( stop = 5 , text = 'Посол' , pos = 'NOUN' , feats = < Anim , Nom , Masc , Sing > , lemma = 'посол' ),
DocToken ( start = 6 , stop = 13 , text = 'Израиля' , pos = 'PROPN' , feats = < Inan , Gen , Masc , Sing > , lemma = 'израиль' ),
DocToken ( start = 14 , stop = 16 , text = 'на' , pos = 'ADP' , lemma = 'на' ),
DocToken ( start = 17 , stop = 24 , text = 'Украине' , pos = 'PROPN' , feats = < Inan , Loc , Fem , Sing > , lemma = 'украина' ),
DocToken ( start = 25 , stop = 30 , text = 'Йоэль' , pos = 'PROPN' , feats = < Anim , Nom , Masc , Sing > , lemma = 'йоэль' )]
{ 'Посол' : 'посол' ,
'Израиля' : 'израиль' ,
'на' : 'на' ,
'Украине' : 'украина' ,
'Йоэль' : 'йоэль' ,
'Лион' : 'лион' ,
'признался' : 'признаться' ,
',' : ',' ,
'что' : 'что' ,
'пришел' : 'прийти' ,
'в' : 'в' ,
'шок' : 'шок' ,
'узнав' : 'узнать' ,
'о' : 'о' ,
... Для каждого предложения прогона анализатора синтаксиса. Зависит от этапа сегментации. Определяет id , head_id , rel Properties of doc.tokens . Использует модель синтаксиса Slovnet внутри.
Используйте syntax.print() для визуализации разметки синтаксиса. Использует Ipymarkup внутри.
> >> doc . parse_syntax ( syntax_parser )
> >> print ( doc . tokens [: 5 ])
> >> doc . sents [ 0 ]. syntax . print ()
[ DocToken ( stop = 5 , text = 'Посол' , id = '1_1' , head_id = '1_7' , rel = 'nsubj' , pos = 'NOUN' , feats = < Anim , Nom , Masc , Sing > ),
DocToken ( start = 6 , stop = 13 , text = 'Израиля' , id = '1_2' , head_id = '1_1' , rel = 'nmod' , pos = 'PROPN' , feats = < Inan , Gen , Masc , Sing > ),
DocToken ( start = 14 , stop = 16 , text = 'на' , id = '1_3' , head_id = '1_4' , rel = 'case' , pos = 'ADP' ),
DocToken ( start = 17 , stop = 24 , text = 'Украине' , id = '1_4' , head_id = '1_1' , rel = 'nmod' , pos = 'PROPN' , feats = < Inan , Loc , Fem , Sing > ),
DocToken ( start = 25 , stop = 30 , text = 'Йоэль' , id = '1_5' , head_id = '1_1' , rel = 'appos' , pos = 'PROPN' , feats = < Anim , Nom , Masc , Sing > )]
┌──► Посол nsubj
│ Израиля
│ ┌► на case
│ └─ Украине
│ ┌─ Йоэль
│ └► Лион flat : name
┌─────┌─└─── признался
│ │ ┌──► , punct
│ │ │ ┌► что mark
│ └►└─└─ пришел ccomp
│ │ ┌► в case
│ └──►└─ шок obl
│ ┌► , punct
│ ┌────►┌─└─ узнав advcl
│ │ │ ┌► о case
│ │ ┌───└►└─ решении obl
│ │ │ ┌─└──► властей nmod
│ │ │ │ ┌► Львовской amod
│ │ │ └──►└─ области nmod
│ └─└►┌─┌─── объявить nmod
│ │ │ ┌► 2019 amod
│ │ └►└─ год obj
│ └──►┌─ годом obl
│ ┌─────└► лидера nmod
│ │ ┌►┌─── запрещенной acl
│ │ │ │ ┌► в case
│ │ │ └►└─ России obl
│ ┌─└►└─┌─── Организации nmod
│ │ │ ┌► украинских amod
│ │ ┌─└►└─ националистов nmod
│ │ │ ┌► ( punct
│ │ └►┌─└─ ОУН parataxis
│ │ └──► ) punct
│ └──────►┌─ Степана appos
│ └► Бандеры flat : name
└──────────► . punct
... Извлечение Standart названные объекты: имена, местоположения, организации. Зависит от этапа сегментации. spans собственность doc . Использует Slovnet NER модель внутри.
Вызовите ner.print() , чтобы визуализировать NER Markup. Использует Ipymarkup внутри.
> >> doc . tag_ner ( ner_tagger )
> >> print ( doc . spans [: 5 ])
> >> doc . ner . print ()
[ DocSpan ( start = 6 , stop = 13 , type = 'LOC' , text = 'Израиля' , tokens = [...]),
DocSpan ( start = 17 , stop = 24 , type = 'LOC' , text = 'Украине' , tokens = [...]),
DocSpan ( start = 25 , stop = 35 , type = 'PER' , text = 'Йоэль Лион' , tokens = [...]),
DocSpan ( start = 89 , stop = 106 , type = 'LOC' , text = 'Львовской области' , tokens = [...]),
DocSpan ( start = 152 , stop = 158 , type = 'LOC' , text = 'России' , tokens = [...])]
Посол Израиля на Украине Йоэль Лион признался , что пришел в шок , узнав
LOC ──── LOC ──── PER ───────
о решении властей Львовской области объявить 2019 год годом лидера
LOC ──────────────
запрещенной в России Организации украинских националистов ( ОУН )
LOC ─── ORG ───────────────────────────────────────
Степана Бандеры . Свое заявление он разместил в Twitter . « Я не могу
PER ──────────── ORG ────
понять , как прославление тех , кто непосредственно принимал участие в
ужасных антисемитских преступлениях , помогает бороться с
антисемитизмом и ксенофобией . Украина не должна забывать о
LOC ────
преступлениях , совершенных против украинских евреев , и никоим образом
не отмечать их через почитание их исполнителей », — написал дипломат .
11 декабря Львовский областной совет принял решение провозгласить 2019
ORG ──────────────────────
год в регионе годом Степана Бандеры в связи с празднованием 110 - летия
PER ────────────
со дня рождения лидера ОУН ( Бандера родился 1 января 1909 года ). В
ORG
июле аналогичное решение принял Житомирский областной совет . В начале
ORG ────────────────────────
месяца с предложением к президенту страны Петру Порошенко вернуть
PER ────────────
Бандере звание Героя Украины обратились депутаты Верховной Рады .
PER ──── LOC ──── ORG ───────────
Парламентарии уверены , что признание Бандеры национальным героем
PER ────
поможет в борьбе с подрывной деятельностью против Украины в
LOC ────
информационном поле , а также остановит « распространение мифов ,
созданных российской пропагандой ». Степан Бандера ( 1909 - 1959 ) был
PER ───────────
одним из лидеров Организации украинских националистов , выступающей за
ORG ─────────────────────────────────
создание независимого государства на территориях с украиноязычным
населением . В 2010 году в период президентства Виктора Ющенко Бандера
PER ─────────── PER ────
был посмертно признан Героем Украины , однако впоследствии это решение
LOC ────
было отменено судом . Для каждого нерелевого расхода применяйте процедуру нормализации. Зависит от NER, морфологии и синтаксических шагов. Определяет normal свойство doc.spans .
Нельзя просто лемматизировать каждый токен внутри сущностей, в противном случае «Органихииии икинский». Наташа использует синтаксисные зависимости, чтобы создать правильные «Органихизя» в Айкрайинском
> >> for span in doc . spans :
> >> span . normalize ( morph_vocab )
> >> print ( doc . spans [: 5 ])
> >> { _ . text : _ . normal for _ in doc . spans if _ . text != _ . normal }
[ DocSpan ( start = 6 , stop = 13 , type = 'LOC' , text = 'Израиля' , tokens = [...], normal = 'Израиль' ),
DocSpan ( start = 17 , stop = 24 , type = 'LOC' , text = 'Украине' , tokens = [...], normal = 'Украина' ),
DocSpan ( start = 25 , stop = 35 , type = 'PER' , text = 'Йоэль Лион' , tokens = [...], normal = 'Йоэль Лион' ),
DocSpan ( start = 89 , stop = 106 , type = 'LOC' , text = 'Львовской области' , tokens = [...], normal = 'Львовская область' ),
DocSpan ( start = 152 , stop = 158 , type = 'LOC' , text = 'России' , tokens = [...], normal = 'Россия' )]
{ 'Израиля' : 'Израиль' ,
'Украине' : 'Украина' ,
'Львовской области' : 'Львовская область' ,
'России' : 'Россия' ,
'Организации украинских националистов (ОУН)' : 'Организация украинских националистов (ОУН)' ,
'Степана Бандеры' : 'Степан Бандера' ,
'Петру Порошенко' : 'Петр Порошенко' ,
'Бандере' : 'Бандера' ,
'Украины' : 'Украина' ,
'Верховной Рады' : 'Верховная Рада' ,
'Бандеры' : 'Бандера' ,
'Организации украинских националистов' : 'Организация украинских националистов' ,
'Виктора Ющенко' : 'Виктор Ющенко' } PARSE PER названные сущности в первое имя, фамилия и патронима. Зависит от шага. Определяет собственность fact doc.spans . Использует Yargy-Parser внутренне.
Наташа также встроила экстракторы для дат, денег, адреса.
> >> for span in doc . spans :
> >> if span . type == PER :
> >> span . extract_fact ( names_extractor )
> >> print ( doc . spans [: 5 ])
> >> { _ . normal : _ . fact . as_dict for _ in doc . spans if _ . type == PER }
[ DocSpan ( start = 6 , stop = 13 , type = 'LOC' , text = 'Израиля' , tokens = [...], normal = 'Израиль' ),
DocSpan ( start = 17 , stop = 24 , type = 'LOC' , text = 'Украине' , tokens = [...], normal = 'Украина' ),
DocSpan ( start = 25 , stop = 35 , type = 'PER' , text = 'Йоэль Лион' , tokens = [...], normal = 'Йоэль Лион' , fact = DocFact ( slots = [...])),
DocSpan ( start = 89 , stop = 106 , type = 'LOC' , text = 'Львовской области' , tokens = [...], normal = 'Львовская область' ),
DocSpan ( start = 152 , stop = 158 , type = 'LOC' , text = 'России' , tokens = [...], normal = 'Россия' )]
{ 'Йоэль Лион' : { 'first' : 'Йоэль' , 'last' : 'Лион' },
'Степан Бандера' : { 'first' : 'Степан' , 'last' : 'Бандера' },
'Петр Порошенко' : { 'first' : 'Петр' , 'last' : 'Порошенко' },
'Бандера' : { 'last' : 'Бандера' },
'Виктор Ющенко' : { 'first' : 'Виктор' , 'last' : 'Ющенко' }}Дев Энг
python -m venv ~ /.venvs/natasha-natasha
source ~ /.venvs/natasha-natasha/bin/activate
pip install -r requirements/dev.txt
pip install -e .
python -m ipykernel install --user --name natasha-natashaТест
make testДок
make exec-docsВыпускать
# Update setup.py version
git commit -am ' Up version '
git tag v1.6.0
git push
git push --tags
# Github Action builds dist and publishes to PyPi