Эта библиотека предоставляет неофициальные клиенты GO для API OpenAI. Мы поддерживаем:
go get github.com/sashabaranov/go-openai
В настоящее время Go-Openai требует версии 1.18 или более.
package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
client := openai . NewClient ( "your token" )
resp , err := client . CreateChatCompletion (
context . Background (),
openai. ChatCompletionRequest {
Model : openai . GPT3Dot5Turbo ,
Messages : []openai. ChatCompletionMessage {
{
Role : openai . ChatMessageRoleUser ,
Content : "Hello!" ,
},
},
},
)
if err != nil {
fmt . Printf ( "ChatCompletion error: %v n " , err )
return
}
fmt . Println ( resp . Choices [ 0 ]. Message . Content )
}Примечание: ваш ключ API является конфиденциальной информацией. Не делитесь этим ни с кем.
package main
import (
"context"
"errors"
"fmt"
"io"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. ChatCompletionRequest {
Model : openai . GPT3Dot5Turbo ,
MaxTokens : 20 ,
Messages : []openai. ChatCompletionMessage {
{
Role : openai . ChatMessageRoleUser ,
Content : "Lorem ipsum" ,
},
},
Stream : true ,
}
stream , err := c . CreateChatCompletionStream ( ctx , req )
if err != nil {
fmt . Printf ( "ChatCompletionStream error: %v n " , err )
return
}
defer stream . Close ()
fmt . Printf ( "Stream response: " )
for {
response , err := stream . Recv ()
if errors . Is ( err , io . EOF ) {
fmt . Println ( " n Stream finished" )
return
}
if err != nil {
fmt . Printf ( " n Stream error: %v n " , err )
return
}
fmt . Printf ( response . Choices [ 0 ]. Delta . Content )
}
} package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. CompletionRequest {
Model : openai . GPT3Babbage002 ,
MaxTokens : 5 ,
Prompt : "Lorem ipsum" ,
}
resp , err := c . CreateCompletion ( ctx , req )
if err != nil {
fmt . Printf ( "Completion error: %v n " , err )
return
}
fmt . Println ( resp . Choices [ 0 ]. Text )
} package main
import (
"errors"
"context"
"fmt"
"io"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. CompletionRequest {
Model : openai . GPT3Babbage002 ,
MaxTokens : 5 ,
Prompt : "Lorem ipsum" ,
Stream : true ,
}
stream , err := c . CreateCompletionStream ( ctx , req )
if err != nil {
fmt . Printf ( "CompletionStream error: %v n " , err )
return
}
defer stream . Close ()
for {
response , err := stream . Recv ()
if errors . Is ( err , io . EOF ) {
fmt . Println ( "Stream finished" )
return
}
if err != nil {
fmt . Printf ( "Stream error: %v n " , err )
return
}
fmt . Printf ( "Stream response: %v n " , response )
}
} package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
req := openai. AudioRequest {
Model : openai . Whisper1 ,
FilePath : "recording.mp3" ,
}
resp , err := c . CreateTranscription ( ctx , req )
if err != nil {
fmt . Printf ( "Transcription error: %v n " , err )
return
}
fmt . Println ( resp . Text )
} package main
import (
"context"
"fmt"
"os"
openai "github.com/sashabaranov/go-openai"
)
func main () {
c := openai . NewClient ( os . Getenv ( "OPENAI_KEY" ))
req := openai. AudioRequest {
Model : openai . Whisper1 ,
FilePath : os . Args [ 1 ],
Format : openai . AudioResponseFormatSRT ,
}
resp , err := c . CreateTranscription ( context . Background (), req )
if err != nil {
fmt . Printf ( "Transcription error: %v n " , err )
return
}
f , err := os . Create ( os . Args [ 1 ] + ".srt" )
if err != nil {
fmt . Printf ( "Could not open file: %v n " , err )
return
}
defer f . Close ()
if _ , err := f . WriteString ( resp . Text ); err != nil {
fmt . Printf ( "Error writing to file: %v n " , err )
return
}
} package main
import (
"bytes"
"context"
"encoding/base64"
"fmt"
openai "github.com/sashabaranov/go-openai"
"image/png"
"os"
)
func main () {
c := openai . NewClient ( "your token" )
ctx := context . Background ()
// Sample image by link
reqUrl := openai. ImageRequest {
Prompt : "Parrot on a skateboard performs a trick, cartoon style, natural light, high detail" ,
Size : openai . CreateImageSize256x256 ,
ResponseFormat : openai . CreateImageResponseFormatURL ,
N : 1 ,
}
respUrl , err := c . CreateImage ( ctx , reqUrl )
if err != nil {
fmt . Printf ( "Image creation error: %v n " , err )
return
}
fmt . Println ( respUrl . Data [ 0 ]. URL )
// Example image as base64
reqBase64 := openai. ImageRequest {
Prompt : "Portrait of a humanoid parrot in a classic costume, high detail, realistic light, unreal engine" ,
Size : openai . CreateImageSize256x256 ,
ResponseFormat : openai . CreateImageResponseFormatB64JSON ,
N : 1 ,
}
respBase64 , err := c . CreateImage ( ctx , reqBase64 )
if err != nil {
fmt . Printf ( "Image creation error: %v n " , err )
return
}
imgBytes , err := base64 . StdEncoding . DecodeString ( respBase64 . Data [ 0 ]. B64JSON )
if err != nil {
fmt . Printf ( "Base64 decode error: %v n " , err )
return
}
r := bytes . NewReader ( imgBytes )
imgData , err := png . Decode ( r )
if err != nil {
fmt . Printf ( "PNG decode error: %v n " , err )
return
}
file , err := os . Create ( "example.png" )
if err != nil {
fmt . Printf ( "File creation error: %v n " , err )
return
}
defer file . Close ()
if err := png . Encode ( file , imgData ); err != nil {
fmt . Printf ( "PNG encode error: %v n " , err )
return
}
fmt . Println ( "The image was saved as example.png" )
} config := openai . DefaultConfig ( "token" )
proxyUrl , err := url . Parse ( "http://localhost:{port}" )
if err != nil {
panic ( err )
}
transport := & http. Transport {
Proxy : http . ProxyURL ( proxyUrl ),
}
config . HTTPClient = & http. Client {
Transport : transport ,
}
c := openai . NewClientWithConfig ( config )См. Также: https://pkg.go.dev/github.com/sashabaranov/go-openai#clientconfig
package main
import (
"bufio"
"context"
"fmt"
"os"
"strings"
"github.com/sashabaranov/go-openai"
)
func main () {
client := openai . NewClient ( "your token" )
messages := make ([]openai. ChatCompletionMessage , 0 )
reader := bufio . NewReader ( os . Stdin )
fmt . Println ( "Conversation" )
fmt . Println ( "---------------------" )
for {
fmt . Print ( "-> " )
text , _ := reader . ReadString ( 'n' )
// convert CRLF to LF
text = strings . Replace ( text , " n " , "" , - 1 )
messages = append ( messages , openai. ChatCompletionMessage {
Role : openai . ChatMessageRoleUser ,
Content : text ,
})
resp , err := client . CreateChatCompletion (
context . Background (),
openai. ChatCompletionRequest {
Model : openai . GPT3Dot5Turbo ,
Messages : messages ,
},
)
if err != nil {
fmt . Printf ( "ChatCompletion error: %v n " , err )
continue
}
content := resp . Choices [ 0 ]. Message . Content
messages = append ( messages , openai. ChatCompletionMessage {
Role : openai . ChatMessageRoleAssistant ,
Content : content ,
})
fmt . Println ( content )
}
} package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
config := openai . DefaultAzureConfig ( "your Azure OpenAI Key" , "https://your Azure OpenAI Endpoint" )
// If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function
// config.AzureModelMapperFunc = func(model string) string {
// azureModelMapping := map[string]string{
// "gpt-3.5-turbo": "your gpt-3.5-turbo deployment name",
// }
// return azureModelMapping[model]
// }
client := openai . NewClientWithConfig ( config )
resp , err := client . CreateChatCompletion (
context . Background (),
openai. ChatCompletionRequest {
Model : openai . GPT3Dot5Turbo ,
Messages : []openai. ChatCompletionMessage {
{
Role : openai . ChatMessageRoleUser ,
Content : "Hello Azure OpenAI!" ,
},
},
},
)
if err != nil {
fmt . Printf ( "ChatCompletion error: %v n " , err )
return
}
fmt . Println ( resp . Choices [ 0 ]. Message . Content )
} package main
import (
"context"
"log"
openai "github.com/sashabaranov/go-openai"
)
func main () {
client := openai . NewClient ( "your-token" )
// Create an EmbeddingRequest for the user query
queryReq := openai. EmbeddingRequest {
Input : [] string { "How many chucks would a woodchuck chuck" },
Model : openai . AdaEmbeddingV2 ,
}
// Create an embedding for the user query
queryResponse , err := client . CreateEmbeddings ( context . Background (), queryReq )
if err != nil {
log . Fatal ( "Error creating query embedding:" , err )
}
// Create an EmbeddingRequest for the target text
targetReq := openai. EmbeddingRequest {
Input : [] string { "How many chucks would a woodchuck chuck if the woodchuck could chuck wood" },
Model : openai . AdaEmbeddingV2 ,
}
// Create an embedding for the target text
targetResponse , err := client . CreateEmbeddings ( context . Background (), targetReq )
if err != nil {
log . Fatal ( "Error creating target embedding:" , err )
}
// Now that we have the embeddings for the user query and the target text, we
// can calculate their similarity.
queryEmbedding := queryResponse . Data [ 0 ]
targetEmbedding := targetResponse . Data [ 0 ]
similarity , err := queryEmbedding . DotProduct ( & targetEmbedding )
if err != nil {
log . Fatal ( "Error calculating dot product:" , err )
}
log . Printf ( "The similarity score between the query and the target is %f" , similarity )
} package main
import (
"context"
"fmt"
openai "github.com/sashabaranov/go-openai"
)
func main () {
config := openai . DefaultAzureConfig ( "your Azure OpenAI Key" , "https://your Azure OpenAI Endpoint" )
config . APIVersion = "2023-05-15" // optional update to latest API version
//If you use a deployment name different from the model name, you can customize the AzureModelMapperFunc function
//config.AzureModelMapperFunc = func(model string) string {
// azureModelMapping := map[string]string{
// "gpt-3.5-turbo":"your gpt-3.5-turbo deployment name",
// }
// return azureModelMapping[model]
//}
input := "Text to vectorize"
client := openai . NewClientWithConfig ( config )
resp , err := client . CreateEmbeddings (
context . Background (),
openai. EmbeddingRequest {
Input : [] string { input },
Model : openai . AdaEmbeddingV2 ,
})
if err != nil {
fmt . Printf ( "CreateEmbeddings error: %v n " , err )
return
}
vectors := resp . Data [ 0 ]. Embedding // []float32 with 1536 dimensions
fmt . Println ( vectors [: 10 ], "..." , vectors [ len ( vectors ) - 10 :])
}Теперь для завершения чата можно выбрать вызов функции для получения дополнительной информации (см. Docs разработчика здесь).
Чтобы описать тип функций, которые можно назвать, должна быть предоставлена схема JSON. Многие библиотеки схемы JSON существуют и более продвинуты, чем то, что мы можем предложить в этой библиотеке, однако мы включили простой пакет jsonschema для тех, кто хочет использовать эту функцию без форматирования своей собственной полезной нагрузки схемы JSON.
Документы разработчика дают это определение схемы JSON в качестве примера:
{
"name" : " get_current_weather " ,
"description" : " Get the current weather in a given location " ,
"parameters" :{
"type" : " object " ,
"properties" :{
"location" :{
"type" : " string " ,
"description" : " The city and state, e.g. San Francisco, CA "
},
"unit" :{
"type" : " string " ,
"enum" :[
" celsius " ,
" fahrenheit "
]
}
},
"required" :[
" location "
]
}
} Используя пакет jsonschema , эта схема может быть создана с использованием структур как таковых:
FunctionDefinition {
Name : "get_current_weather" ,
Parameters : jsonschema. Definition {
Type : jsonschema . Object ,
Properties : map [ string ]jsonschema. Definition {
"location" : {
Type : jsonschema . String ,
Description : "The city and state, e.g. San Francisco, CA" ,
},
"unit" : {
Type : jsonschema . String ,
Enum : [] string { "celsius" , "fahrenheit" },
},
},
Required : [] string { "location" },
},
} Поле Parameters FunctionDefinition может принять любой из вышеперечисленных стилей, или даже вложенную структуру из другой библиотеки (до тех пор, пока он может быть заменен в JSON).
Open-AI сохраняет четкую документацию о том, как обрабатывать ошибки API
пример:
e := &openai.APIError{}
if errors.As(err, &e) {
switch e.HTTPStatusCode {
case 401:
// invalid auth or key (do not retry)
case 429:
// rate limiting or engine overload (wait and retry)
case 500:
// openai server error (retry)
default:
// unhandled
}
}
package main
import (
"context"
"fmt"
"github.com/sashabaranov/go-openai"
)
func main () {
client := openai . NewClient ( "your token" )
ctx := context . Background ()
// create a .jsonl file with your training data for conversational model
// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
// {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
// chat models are trained using the following file format:
// {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
// {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
// {"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}
// you can use openai cli tool to validate the data
// For more info - https://platform.openai.com/docs/guides/fine-tuning
file , err := client . CreateFile ( ctx , openai. FileRequest {
FilePath : "training_prepared.jsonl" ,
Purpose : "fine-tune" ,
})
if err != nil {
fmt . Printf ( "Upload JSONL file error: %v n " , err )
return
}
// create a fine tuning job
// Streams events until the job is done (this often takes minutes, but can take hours if there are many jobs in the queue or your dataset is large)
// use below get method to know the status of your model
fineTuningJob , err := client . CreateFineTuningJob ( ctx , openai. FineTuningJobRequest {
TrainingFile : file . ID ,
Model : "davinci-002" , // gpt-3.5-turbo-0613, babbage-002.
})
if err != nil {
fmt . Printf ( "Creating new fine tune model error: %v n " , err )
return
}
fineTuningJob , err = client . RetrieveFineTuningJob ( ctx , fineTuningJob . ID )
if err != nil {
fmt . Printf ( "Getting fine tune model error: %v n " , err )
return
}
fmt . Println ( fineTuningJob . FineTunedModel )
// once the status of fineTuningJob is `succeeded`, you can use your fine tune model in Completion Request or Chat Completion Request
// resp, err := client.CreateCompletion(ctx, openai.CompletionRequest{
// Model: fineTuningJob.FineTunedModel,
// Prompt: "your prompt",
// })
// if err != nil {
// fmt.Printf("Create completion error %vn", err)
// return
// }
//
// fmt.Println(resp.Choices[0].Text)
} package main
import (
"context"
"fmt"
"log"
"github.com/sashabaranov/go-openai"
"github.com/sashabaranov/go-openai/jsonschema"
)
func main () {
client := openai . NewClient ( "your token" )
ctx := context . Background ()
type Result struct {
Steps [] struct {
Explanation string `json:"explanation"`
Output string `json:"output"`
} `json:"steps"`
FinalAnswer string `json:"final_answer"`
}
var result Result
schema , err := jsonschema . GenerateSchemaForType ( result )
if err != nil {
log . Fatalf ( "GenerateSchemaForType error: %v" , err )
}
resp , err := client . CreateChatCompletion ( ctx , openai. ChatCompletionRequest {
Model : openai . GPT4oMini ,
Messages : []openai. ChatCompletionMessage {
{
Role : openai . ChatMessageRoleSystem ,
Content : "You are a helpful math tutor. Guide the user through the solution step by step." ,
},
{
Role : openai . ChatMessageRoleUser ,
Content : "how can I solve 8x + 7 = -23" ,
},
},
ResponseFormat : & openai. ChatCompletionResponseFormat {
Type : openai . ChatCompletionResponseFormatTypeJSONSchema ,
JSONSchema : & openai. ChatCompletionResponseFormatJSONSchema {
Name : "math_reasoning" ,
Schema : schema ,
Strict : true ,
},
},
})
if err != nil {
log . Fatalf ( "CreateChatCompletion error: %v" , err )
}
err = schema . Unmarshal ( resp . Choices [ 0 ]. Message . Content , & result )
if err != nil {
log . Fatalf ( "Unmarshal schema error: %v" , err )
}
fmt . Println ( result )
}Даже при указании температурного поля 0, это не гарантирует, что вы всегда получите одинаковый ответ. Несколько факторов вступают в игру.
Из -за факторов, упомянутых выше, различные ответы могут быть возвращены даже для одного и того же вопроса.
Обходные пути:
seed в сочетании с полем ответа system_fingerprint , наряду с управлением температурой.math.SmallestNonzeroFloat32 : указав math.SmallestNonzeroFloat32 в поле температуры вместо 0, вы можете имитировать поведение его установки на 0.Приняв эти стратегии, вы можете ожидать более последовательных результатов.
Связанные вопросы:
Omitempty Option of Request struct будет генерировать неправильный запрос, когда параметр будет 0.
Нет, Go Openai не предлагает функцию считать токены, и в будущем нет планов, чтобы предоставить такую функцию. Однако, если есть способ реализовать функцию подсчета токенов с нулевыми зависимостями, можно было бы объединить эту функцию в go openai. В противном случае было бы более уместно реализовать его в специальной библиотеке или хранилище.
Для подсчета токенов, вы можете найти следующие ссылки полезными:
Связанные вопросы:
Возможно ли присоединиться к реализации токенизатора GPT3
Следуя рекомендациям, мы надеемся убедиться, что ваши вклады будут внесены гладко и эффективно.
Мы хотим потратить время, чтобы выразить свою глубокую благодарность участникам и спонсорам этого проекта:
Всем вам: спасибо. Вы помогли нам достичь большего, чем мы когда -либо думали. Не могу дождаться, чтобы увидеть, куда мы пойдем дальше, вместе!