TextGenerationEvaluationMetrics
1.0.0
Esta é a implementação de métricas para medir a diversidade e a qualidade, que são introduzidas neste artigo. Além disso, existem outras métricas.
Para Bleu e Selfbleu, essa implementação de hiperformance é usada.
Aqui está um exemplo para calcular a distância MS-Jaccard. A entrada dessas métricas é uma lista de frases tokenizadas.
from multiset_distances import MultisetDistances
ref1 = [ 'It' , 'is' , 'a' , 'guide' , 'to' , 'action' , 'that' , 'ensures' , 'that' , 'the' , 'military' , 'will' , 'forever' , 'heed' , 'Party' , 'commands' ]
ref2 = [ 'It' , 'is' , 'the' , 'guiding' , 'principle' , 'which' , 'guarantees' , 'the' , 'military' , 'forces' , 'always' , 'being' , 'under' , 'the' , 'command' , 'of' , 'the' , 'Party' ]
ref3 = [ 'It' , 'is' , 'the' , 'practical' , 'guide' , 'for' , 'the' , 'army' , 'always' , 'to' , 'heed' , 'the' , 'directions' , 'of' , 'the' , 'party' ]
sen1 = [ 'It' , 'is' , 'a' , 'guide' , 'to' , 'action' , 'which' , 'ensures' , 'that' , 'the' , 'military' , 'always' , 'obeys' , 'the' , 'commands' , 'of' , 'the' , 'party' ]
sen2 = [ 'he' , 'read' , 'the' , 'book' , 'because' , 'he' , 'was' , 'interested' , 'in' , 'world' , 'history' ]
references = [ ref1 , ref2 , ref3 ]
sentences = [ sen1 , sen2 ]
msd = MultisetDistances ( references = references )
msj_distance = msd . get_jaccard_score ( sentences = sentences ) O valor da msj_distance é {3: 0.17, 4: 0.13, 5: 0.09} , que mostra MS-Jaccard para 3 gramas, 4-Garm e 5 gramas, respectivamente.
Aqui está um exemplo para calcular a distância FBD e EMBD. A entrada dessas métricas é uma lista de strings, e o Bert Tokenizer é usado no código.
from bert_distances import FBD , EMBD
references = [ "that is very good" , "it is great" ]
sentences1 = [ "this is nice" , "that is good" ]
sentences2 = [ "it is bad" , "this is very bad" ]
fbd = FBD ( references = references , model_name = "bert-base-uncased" , bert_model_dir = "/tmp/Bert/" )
fbd_distance_sentences1 = fbd . get_score ( sentences = sentences1 )
fbd_distance_sentences2 = fbd . get_score ( sentences = sentences2 )
# fbd_distance_sentences1 = 17.8, fbd_distance_sentences2 = 22.0
embd = EMBD ( references = references , model_name = "bert-base-uncased" , bert_model_dir = "/tmp/Bert/" )
embd_distance_sentences1 = embd . get_score ( sentences = sentences1 )
embd_distance_sentences2 = embd . get_score ( sentences = sentences2 )
# embd_distance_sentences1 = 10.9, embd_distance_sentences2 = 20.4Cite nosso artigo se ajudar na sua pesquisa.
@misc{montahaei2019jointly,
title={Jointly Measuring Diversity and Quality in Text Generation Models},
author={Ehsan Montahaei and Danial Alihosseini and Mahdieh Soleymani Baghshah},
year={2019},
eprint={1904.03971},
archivePrefix={arXiv},
primaryClass={cs.LG}
}