piepline
1.0.0
Pipeline de treinamento de redes neurais com base em Pytorch. Projetado para padronizar o processo de treinamento e acelerar experimentos.
| Estável: | Mais recente: |
import torch
from neural_pipeline . builtin . monitors . tensorboard import TensorboardMonitor
from neural_pipeline . monitoring import LogMonitor
from neural_pipeline import DataProducer , TrainConfig , TrainStage ,
ValidationStage , Trainer , FileStructManager
from somethig import MyNet , MyDataset
fsm = FileStructManager ( base_dir = 'data' , is_continue = False )
model = MyNet (). cuda ()
train_dataset = DataProducer ([ MyDataset ()], batch_size = 4 , num_workers = 2 )
validation_dataset = DataProducer ([ MyDataset ()], batch_size = 4 , num_workers = 2 )
train_config = TrainConfig ( model , [ TrainStage ( train_dataset ),
ValidationStage ( validation_dataset )], torch . nn . NLLLoss (),
torch . optim . SGD ( model . parameters (), lr = 1e-4 , momentum = 0.5 ))
trainer = Trainer ( train_config , fsm , torch . device ( 'cuda:0' )). set_epoch_num ( 50 )
trainer . monitor_hub . add_monitor ( TensorboardMonitor ( fsm , is_continue = False ))
. add_monitor ( LogMonitor ( fsm ))
trainer . train ()Este exemplo de treinamento do MyNet no MyDataset com vizualização no Tensorflow e com o log de métricas para comparação adicional de experimentos.
pip install piepline
builtin usando instalação: pip install tensorboardX matplotlib
pip install -U git+https://github.com/PiePline/piepline