pytorch soft actor critic
1.0.0
Reimplementação de algoritmos e aplicações de ator-ator mole e uma variante determinística do SAC de ator macio-crítico: Aprendizagem de reforço profundo da entropia máxima da política fora da política com um ator estocástico.
Adicionado outro ramo para o ator macio-crítico: Aprendizagem de reforço profundo da entropia máxima da política fora da política com um ator estocástico-> SAC_V.
usage: main.py [-h] [--env-name ENV_NAME] [--policy POLICY] [--eval EVAL]
[--gamma G] [--tau G] [--lr G] [--alpha G]
[--automatic_entropy_tuning G] [--seed N] [--batch_size N]
[--num_steps N] [--hidden_size N] [--updates_per_step N]
[--start_steps N] [--target_update_interval N]
[--replay_size N] [--cuda]
(Nota: não há necessidade de definir a temperatura ( --alpha ) se --automatic_entropy_tuning for verdadeiro.)
python main.py --env-name Humanoid-v2 --alpha 0.05
python main.py --env-name Humanoid-v2 --alpha 0.05 --tau 1 --target_update_interval 1000
python main.py --env-name Humanoid-v2 --policy Deterministic --tau 1 --target_update_interval 1000
PyTorch Soft Actor-Critic Args
optional arguments:
-h, --help show this help message and exit
--env-name ENV_NAME Mujoco Gym environment (default: HalfCheetah-v2)
--policy POLICY Policy Type: Gaussian | Deterministic (default:
Gaussian)
--eval EVAL Evaluates a policy a policy every 10 episode (default:
True)
--gamma G discount factor for reward (default: 0.99)
--tau G target smoothing coefficient(τ) (default: 5e-3)
--lr G learning rate (default: 3e-4)
--alpha G Temperature parameter α determines the relative
importance of the entropy term against the reward
(default: 0.2)
--automatic_entropy_tuning G
Automaically adjust α (default: False)
--seed N random seed (default: 123456)
--batch_size N batch size (default: 256)
--num_steps N maximum number of steps (default: 1e6)
--hidden_size N hidden size (default: 256)
--updates_per_step N model updates per simulator step (default: 1)
--start_steps N Steps sampling random actions (default: 1e4)
--target_update_interval N
Value target update per no. of updates per step
(default: 1)
--replay_size N size of replay buffer (default: 1e6)
--cuda run on CUDA (default: False)
Ambiente ( --env-name ) | Temperatura ( --alpha ) |
|---|---|
| HalfCheetah-V2 | 0,2 |
| Hopper-V2 | 0,2 |
| Walker2D-V2 | 0,2 |
| ANT-V2 | 0,2 |
| Humanóide-V2 | 0,05 |