Bem -vindo ao projeto EVOTORCH! O Evotorch é uma biblioteca de computação evolutiva de código aberto desenvolvido na NNAisense, construído sobre o Pytorch. Consulte a documentação para obter orientações aprofundadas sobre o uso de evotorch e junte-se a nós no Slack para discussões.
Comece instalando o Evotorch:
pip install evotorch
Com o eVotorch, pode -se resolver vários problemas de otimização, independentemente de serem diferenciáveis (ou seja, permitir a ascendência do gradiente). Entre os tipos de problemas que são solucionáveis com o eVotorch estão:
Vários algoritmos de computação evolutiva estão disponíveis em Evotorch:
Como todos esses algoritmos são implementados em Pytorch, eles se beneficiam do uso de vetorização e paralelização nas GPUs, acelerando drasticamente a otimização quando as GPUs estão disponíveis. Usando Ray, o EVOTORCH escala esses algoritmos ainda mais, dividindo a carga de trabalho:
Abaixo estão alguns exemplos de código que demonstram a API do EVOTORCH.
Qualquer função objetiva definida para trabalhar com Pytorch pode ser usada diretamente com o eVotorch. Uma função objetiva não vetorizada simplesmente recebe uma solução como um tensor de tocha unidimensional e retorna uma aptidão como escalar. Uma função objetiva vetorizada recebe um lote de soluções como um tensor de tocha bidimensional e retorna um tensor de fitness de fitness. O exemplo a seguir demonstra como definir e resolver o problema clássico do Rastrigin.
from evotorch import Problem
from evotorch . algorithms import SNES
from evotorch . logging import StdOutLogger , PandasLogger
import math
import matplotlib . pyplot as plt
import torch
# Declare the objective function
def rastrigin ( x : torch . Tensor ) -> torch . Tensor :
A = 10
( _ , n ) = x . shape
return A * n + torch . sum (( x ** 2 ) - A * torch . cos ( 2 * math . pi * x ), 1 )
# Declare the problem
problem = Problem (
"min" ,
rastrigin ,
initial_bounds = ( - 5.12 , 5.12 ),
solution_length = 100 ,
vectorized = True ,
# device="cuda:0" # enable this line if you wish to use GPU
)
# Initialize the SNES algorithm to solve the problem
searcher = SNES ( problem , popsize = 1000 , stdev_init = 10.0 )
# Initialize a standard output logger, and a pandas logger
_ = StdOutLogger ( searcher , interval = 10 )
pandas_logger = PandasLogger ( searcher )
# Run SNES for the specified amount of generations
searcher . run ( 2000 )
# Get the progress of the evolution into a DataFrame with the
# help of the PandasLogger, and then plot the progress.
pandas_frame = pandas_logger . to_dataframe ()
pandas_frame [ "best_eval" ]. plot ()
plt . show ()O exemplo a seguir demonstra como resolver tarefas de aprendizado de reforço que estão disponíveis na biblioteca de ginástica.
from evotorch . algorithms import PGPE
from evotorch . logging import StdOutLogger , PicklingLogger
from evotorch . neuroevolution import GymNE
# Declare the problem to solve
problem = GymNE (
env = "Humanoid-v4" , # Solve the Humanoid-v4 task
network = "Linear(obs_length, act_length)" , # Linear policy
observation_normalization = True , # Normalize the policy inputs
decrease_rewards_by = 5.0 , # Decrease each reward by 5.0
num_actors = "max" , # Use all available CPUs
# num_actors=4, # Explicit setting. Use 4 actors.
)
# Instantiate a PGPE algorithm to solve the problem
searcher = PGPE (
problem ,
# Base population size
popsize = 200 ,
# For each generation, sample more solutions until the
# number of simulator interactions reaches this threshold
num_interactions = int ( 200 * 1000 * 0.75 ),
# Stop re-sampling solutions if the current population size
# reaches or exceeds this number.
popsize_max = 3200 ,
# Learning rates
center_learning_rate = 0.0075 ,
stdev_learning_rate = 0.1 ,
# Radius of the initial search distribution
radius_init = 0.27 ,
# Use the ClipUp optimizer with the specified maximum speed
optimizer = "clipup" ,
optimizer_config = { "max_speed" : 0.15 },
)
# Instantiate a standard output logger
_ = StdOutLogger ( searcher )
# Optional: Instantiate a logger to pickle and save the results periodically.
# In this example, among the saved results will be the center of the search
# distribution, since we are using PGPE which is distribution-based.
_ = PicklingLogger ( searcher , interval = 10 )
# Run the algorithm for the specified amount of generations
searcher . run ( 500 )
# Get the center point of the search distribution,
# obtain a policy out of that point, and visualize the
# agent using that policy.
center_solution = searcher . status [ "center" ]
trained_policy = problem . make_net ( center_solution )
problem . visualize ( trained_policy )Mais exemplos podem ser encontrados aqui.
Se você usar o EVOTORCH em sua pesquisa, considere citar nosso artigo.
@article { evotorch2023arxiv ,
title = { {EvoTorch}: Scalable Evolutionary Computation in {Python} } ,
author = { Toklu, Nihat Engin and Atkinson, Timothy and Micka, Vojtv{e}ch and Liskowski, Pawel{} and Srivastava, Rupesh Kumar } ,
journal = { arXiv preprint } ,
year = { 2023 } ,
note = { https://arxiv.org/abs/2302.12600 }
}Consulte nossas diretrizes de contribuição.