As ferramentas LocalGPTResearcher e WebGPTResearcher foram projetadas para ajudar na realização de pesquisas completas sobre tópicos ou consultas específicas. Essas ferramentas aproveitam o poder dos modelos GPT para gerar relatórios detalhados, tornando-os ideais para várias tarefas relacionadas à pesquisa. A ferramenta LocalGPTResearcher acessa arquivos de dados locais, enquanto o WebGPTResearcher recupera informações da Web.
LocalGPTResearcher pode trabalhar com vários formatos de arquivos locais, como PDF, documentos do Word, CSVs e muito mais.WebGPTResearcher busca dados diretamente da Internet, tornando-os adequados para a coleta de informações atualizadas.Certifique -se de instalar o Python 3 no seu sistema.
Instale os pacotes necessários usando o PIP:
pip install gpt-researcher Para LocalGPTResearcher , você precisa definir as seguintes variáveis de ambiente:
export DOC_PATH=/path/to/your/documents
export OPENAI_API_KEY=your-openai-api-key
export TAVILY_API_KEY=your-tavily-api-key Para WebGPTResearcher , apenas o OPENAI_API_KEY e TAVILY_API_KEY são necessários:
export OPENAI_API_KEY=your-openai-api-key
export TAVILY_API_KEY=your-tavily-api-key Este exemplo demonstra como usar LocalGPTResearcher para gerar um relatório com base em documentos locais.
from libs . community . langchain_community . tools . gpt_researcher . tool import LocalGPTResearcher # This will be changed after successful PR
# Initialize the tool
researcher_local = LocalGPTResearcher ( report_type = "research_report" )
# You can also define it as `researcher_local = LocalGPTResearcher()` - default report_type is research_report.
# Run a query
query = "What is the demographics of Apple inc look like?"
report = researcher_local . invoke ({ "query" : query })
print ( "Generated Report:" , report ) Este exemplo mostra como usar WebGPTResearcher para gerar um relatório com base em dados da Web.
from libs . community . langchain_community . tools . gpt_researcher . tool import WebGPTResearcher # This will be changed after successful PR
# Initialize the tool
researcher_web = WebGPTResearcher ( report_type = "research_report" ) # report_type="research_report" is optional as the default value is `research_report`
# Run a query
query = "What are the latest advancements in AI?"
report = researcher_web . invoke ({ "query" : query })
print ( "Generated Report:" , report )AgentExecutor com WebGPTResearcherVamos ver como construir um invólucro do AgentExecutor que usa um LLM e nossa ferramenta para escrever um ensaio e fornecer uma citação/assinatura no final do relatório.
from libs . community . langchain_community . tools . gpt_researcher . tool import WebGPTResearcher # This will be changed after successful PR
from langchain import hub
from langchain_core . tools import Tool
from langchain . agents import AgentExecutor , create_react_agent
from langchain . tools import tool
from langchain_openai import ChatOpenAI
# Let us see how to use the WebGPTResearcher tool along with AgentExecutor to perform a grand task with decision making.
# 1. Let us build a Reactive Agent who takes decisions based on reasoning.
# 2. Let us give our agent 2 tools - WebGPTResearcher and a dummy tool that provides a signature at the end of the text
# 3. We can then wrap our agent and tools inside an AgentExecutor object and ask our question!
# The expectation is the response must be signed at the end after a long report on a research topic.
# Create a new tool called citation_provider.
@ tool
def citation_provider ( text : str ) -> str :
"""Provides a citation or signature"""
return " n - Written by GPT-Makesh n Thanks for reading! n "
# Create the WebGPTResearcher tool
researcher_web = WebGPTResearcher ( "research_report" )
# Initialize tools and components
tools = [
researcher_web ,
Tool (
name = "citation_tool" ,
func = citation_provider ,
description = "Useful for when you need to add citation or signature at the end of text" ,
),
]
# Create an LLM
llm = ChatOpenAI ( model = "gpt-4o" )
prompt = hub . pull ( "hwchase17/react" )
# Create the ReAct agent using the create_react_agent function
agent = create_react_agent (
llm = llm ,
tools = tools ,
prompt = prompt ,
stop_sequence = True ,
)
# Wrap the components inside an AgentExecutor
agent_executor = AgentExecutor . from_agent_and_tools ( agent = agent , tools = tools , verbose = True )
# Run the agent
question = "What are the recent advancements in AI? Provide a citation for your report too."
response = agent_executor . invoke ({ "input" : question })
print ( "Agent Response:" , response )WebGPTResearcherVamos construir uma cadeia de Runnables que tenha um pesquisador que escreve um relatório e um aluno que então classifica e obtém o relatório.
from libs . community . langchain_community . tools . gpt_researcher . tool import WebGPTResearcher
from langchain . prompts import ChatPromptTemplate
from langchain . schema . output_parser import StrOutputParser
from langchain . schema . runnable import RunnableLambda
from langchain_openai import ChatOpenAI
# Let us use WebGPTResearcher to grade the essay using LECL langchain Chaining tricks
# 1. Use the researcher to write an essay
# 2. Pass it as a chat_prompt_template (a runnable) to a grader to score the essay
# 3. Parse the output as a string
# Create a ChatOpenAI model
grader = ChatOpenAI ( model = "gpt-4o" )
researcher_tool = WebGPTResearcher ()
prompt_template = ChatPromptTemplate . from_messages (
[
( "system" , "You are a essay grader. Give score out of 10 in brief" ),
( "human" , "The essay: {essay}" ),
]
)
# Define our WebGPTResearcher tool as a RunnableLambda
researcher = RunnableLambda ( lambda x : researcher_tool . invoke ( x ))
# Create the combined chain using LangChain Expression Language (LCEL)
chain = researcher | prompt_template | grader | StrOutputParser ()
# Run the chain
result = chain . invoke ({ "query" : "What are the recent advancements in AI?" })
# Output
print ( result )BaseGPTResearcher Você pode criar ferramentas personalizadas, estendendo a classe BaseGPTResearcher . Aqui está um exemplo:
from libs . community . langchain_community . tools . gpt_researcher . tool import WebGPTResearcher
class CustomGPTResearcher ( BaseGPTResearcher ):
name = ""
description = ""
def __init__ ( self , report_type : ReportType = ReportType . RESEARCH ):
super (). __init__ ( report_type = report_type , report_source = "web" )
# Override or extend methods as needed (You need to implement `_run()` method, `_arun()` is optional)Referência da API: (Ferramenta de pesquisador GPT) [Link]
Você pode definir uma ferramenta GPTR personalizada, como mostrado abaixo:
import asyncio
from typing import Optional , Type
from langchain_core . callbacks import CallbackManagerForToolRun
from langchain_core . pydantic_v1 import BaseModel , Field
from langchain_core . tools import BaseTool
from gpt_researcher import GPTResearcher
class GPTRInput ( BaseModel ):
"""Input schema for the GPT-Researcher tool."""
query : str = Field ( description = "The search query for the research" )
class MyGPTResearcher ( BaseTool ):
name : str = "custom_gpt_researcher"
description : str = "Base tool for researching and producing detailed information about a topic or query using the internet."
args_schema : Type [ BaseModel ] = GPTRInput
async def get_report ( self , query : str ) -> str :
try :
researcher = GPTResearcher (
query = query ,
report_type = "research_report" ,
report_source = "web" ,
verbose = False
)
await researcher . conduct_research ()
report = await researcher . write_report ()
return report
except Exception as e :
raise ValueError ( f"Error generating report: { str ( e ) } " )
def _run (
self ,
query : str ,
run_manager : Optional [ CallbackManagerForToolRun ] = None
) -> str :
answer = asyncio . run ( self . get_report ( query = query ))
answer += " n n - By GPT-Makesh. n Thanks for reading!"
return answer
my_researcher = MyGPTResearcher ()
report = my_researcher . invoke ({ "query" : "What are the recent advancements in AI?" })
print ( report )Como alternativa, você pode usar diretamente as ferramentas fornecidas sem modificação pronta para uso.
from libs . community . langchain_community . tools . gpt_researcher . tool import WebGPTResearcher , LocalGPTResearcher
# Use LocalGPTResearcher
researcher_local = LocalGPTResearcher ( report_type = "research_report" )
report = researcher_local . invoke ({ 'query' : "What can you tell about the company?" })
# Use WebGPTResearcher
researcher_web = WebGPTResearcher ( report_type = "research_report" )
report = researcher_web . invoke ({ 'query' : "What are the latest advancements in AI?" })gpt-4o-mini e gpt-4o (contexto 128K) somente quando necessário. A tarefa média de pesquisa leva cerca de 3 minutos e custa aproximadamente US $ 0,005.Congratulamo-nos com contribuições para melhorar e estender as ferramentas de pesquisa-GPT. Visite o repositório do GitHub para começar a contribuir.