
Perguntas | solicitações de recursos
Simplificar. Unificar. Amplificar.
| Recurso | Autollm | Langchain | Llamaindex | Litellm |
|---|---|---|---|---|
| 100+ LLMS | ✅ | ✅ | ✅ | ✅ |
| API unificado | ✅ | ✅ | ||
| 20+ bancos de dados de vetores | ✅ | ✅ | ✅ | |
| Cálculo de custos (100+ LLMS) | ✅ | ✅ | ||
| Motor Rag LLM de 1 linha | ✅ | |||
| 1-line FASTAPI | ✅ |
Instale facilmente o pacote Autollm com PIP em Python> = 3.8 ambiente.
pip install autollmPara leitores de dados embutidos (github, pdf, docx, ipynb, epub, mbox, sites ..), instale com:
pip install autollm[readers]Tutoriais em vídeo :
Postagens do blog :
Cadernos colab :
>> > from autollm import AutoQueryEngine , read_files_as_documents
>> > documents = read_files_as_documents ( input_dir = "path/to/documents" )
>> > query_engine = AutoQueryEngine . from_defaults ( documents )
>> > response = query_engine . query (
... "Why did SafeVideo AI develop this project?"
... )
>> > response . response
"Because they wanted to deploy rag based llm apis in no time!" >> > from autollm import AutoQueryEngine
>> > query_engine = AutoQueryEngine . from_defaults (
... documents = documents ,
... llm_model = "gpt-3.5-turbo" ,
... llm_max_tokens = "256" ,
... llm_temperature = "0.1" ,
... system_prompt = '...' ,
... query_wrapper_prompt = '...' ,
... enable_cost_calculator = True ,
... embed_model = "huggingface/BAAI/bge-large-zh" ,
... chunk_size = 512 ,
... chunk_overlap = 64 ,
... context_window = 4096 ,
... similarity_top_k = 3 ,
... response_mode = "compact" ,
... structured_answer_filtering = False ,
... vector_store_type = "LanceDBVectorStore" ,
... lancedb_uri = "./lancedb" ,
... lancedb_table_name = "vectors" ,
... exist_ok = True ,
... overwrite_existing = False ,
... )
>> > response = query_engine . query ( "Who is SafeVideo AI?" )
>> > print ( response . response )
"A startup that provides self hosted AI API's for companies!" >> > import uvicorn
>> > from autollm import AutoFastAPI
>> > app = AutoFastAPI . from_query_engine ( query_engine )
>> > uvicorn . run ( app , host = "0.0.0.0" , port = 8000 )
INFO : Started server process [ 12345 ]
INFO : Waiting for application startup .
INFO : Application startup complete .
INFO : Uvicorn running on http : // http : // 0.0 . 0.0 : 8000 / >> > from autollm import AutoFastAPI
>> > app = AutoFastAPI . from_query_engine (
... query_engine ,
... api_title = '...' ,
... api_description = '...' ,
... api_version = '...' ,
... api_term_of_service = '...' ,
)
>> > uvicorn . run ( app , host = "0.0.0.0" , port = 8000 )
INFO : Started server process [ 12345 ]
INFO : Waiting for application startup .
INFO : Application startup complete .
INFO : Uvicorn running on http : // http : // 0.0 . 0.0 : 8000 / >> > from autollm import AutoQueryEngine
>> > os . environ [ "HUGGINGFACE_API_KEY" ] = "huggingface_api_key"
>> > llm_model = "huggingface/WizardLM/WizardCoder-Python-34B-V1.0"
>> > llm_api_base = "https://my-endpoint.huggingface.cloud"
>> > AutoQueryEngine . from_defaults (
... documents = '...' ,
... llm_model = llm_model ,
... llm_api_base = llm_api_base ,
... )Huggingface - Exemplo de Ollama:
>> > from autollm import AutoQueryEngine
>> > llm_model = "ollama/llama2"
>> > llm_api_base = "http://localhost:11434"
>> > AutoQueryEngine . from_defaults (
... documents = '...' ,
... llm_model = llm_model ,
... llm_api_base = llm_api_base ,
... )Microsoft Azure - OpenAI Exemplo:
>> > from autollm import AutoQueryEngine
>> > os . environ [ "AZURE_API_KEY" ] = ""
>> > os . environ [ "AZURE_API_BASE" ] = ""
>> > os . environ [ "AZURE_API_VERSION" ] = ""
>> > llm_model = "azure/<your_deployment_name>" )
>> > AutoQueryEngine . from_defaults (
... documents = '...' ,
... llm_model = llm_model
... )Google - Exemplo de Vertexai:
>> > from autollm import AutoQueryEngine
>> > os . environ [ "VERTEXAI_PROJECT" ] = "hardy-device-38811" # Your Project ID`
>> > os . environ [ "VERTEXAI_LOCATION" ] = "us-central1" # Your Location
>> > llm_model = "text-bison@001"
>> > AutoQueryEngine . from_defaults (
... documents = '...' ,
... llm_model = llm_model
... )AWS Bedrock - Claude v2 Exemplo:
>> > from autollm import AutoQueryEngine
>> > os . environ [ "AWS_ACCESS_KEY_ID" ] = ""
>> > os . environ [ "AWS_SECRET_ACCESS_KEY" ] = ""
>> > os . environ [ "AWS_REGION_NAME" ] = ""
>> > llm_model = "anthropic.claude-v2"
>> > AutoQueryEngine . from_defaults (
... documents = '...' ,
... llm_model = llm_model
... ) ? Dica Pro : autollm Padrats to lancedb como o Vector Store: é sem configuração, sem servidor e 100x mais econômico!
>> > from autollm import AutoQueryEngine
>> > import qdrant_client
>> > vector_store_type = "QdrantVectorStore"
>> > client = qdrant_client . QdrantClient (
... url = "http://<host>:<port>" ,
... api_key = "<qdrant-api-key>"
... )
>> > collection_name = "quickstart"
>> > AutoQueryEngine . from_defaults (
... documents = '...' ,
... vector_store_type = vector_store_type ,
... client = client ,
... collection_name = collection_name ,
... ) >> > from autollm import AutoServiceContext
>> > service_context = AutoServiceContext ( enable_cost_calculation = True )
# Example verbose output after query
Embedding Token Usage : 7
LLM Prompt Token Usage : 1482
LLM Completion Token Usage : 47
LLM Total Token Cost : $ 0.002317 >> > from autollm import AutoFastAPI
>> > app = AutoFastAPI . from_config ( config_path , env_path ) Aqui, config e env devem ser substituídos pelos seus caminhos de arquivo de configuração e ambiente.
Depois de criar seu aplicativo FASTAPI, execute o seguinte comando em seu terminal para colocá -lo em funcionamento:
uvicorn main:appMudando do índice de llama? Temos você coberto.
>> > from llama_index import StorageContext , ServiceContext , VectorStoreIndex
>> > from llama_index . vectorstores import LanceDBVectorStore
>> > from autollm import AutoQueryEngine
>> > vector_store = LanceDBVectorStore ( uri = "./.lancedb" )
>> > storage_context = StorageContext . from_defaults ( vector_store = vector_store )
>> > service_context = ServiceContext . from_defaults ()
>> > index = VectorStoreIndex . from_documents (
documents = documents ,
storage_context = storage_contex ,
service_context = service_context ,
)
>> > query_engine = AutoQueryEngine . from_instances ( index )P: Posso usar isso para projetos comerciais?
R: Sim, o Autollm é licenciado sob licença pública geral da GNU Affero (AGPL 3.0), que permite o uso comercial sob determinadas condições. Entre em contato conosco para obter mais informações.
Nosso roteiro descreve os próximos recursos e integrações para tornar o Autollm o pacote básico mais extensível e poderoso para aplicativos de modelos de idiomas grandes.
Criação e implantação de aplicativos de graduação de 1 linha
Notificação de email baseada no orçamento
Avaliação automatizada de LLM
Adicione aplicativos mais rápidos no PDF-Chat, documentação-bate-papo, análise acadêmica-papa, análise de patentes e muito mais!
O Autollm está disponível sob a licença pública geral do GNU Affero (AGPL 3.0).
Para mais informações, suporte ou perguntas, entre em contato com:
Love Autollm? Estrela o repositório ou contribua e ajude -nos a torná -lo ainda melhor! Veja nossas diretrizes contribuintes para obter mais informações.


