Adaptasi rendah untuk menghapus konsep dari model difusi.
Repositori Asli: Menghapus Konsep dari Model Difusi
dan halaman proyek: https://erasing.baulab.info/
(Tidak hanya untuk menghapus konsep, tetapi juga menekankan atau menukarnya dengan merancang petunjuk dan berat Lora. Lihat ConceptMod untuk lebih jelasnya)
conda create -n leco python=3.10
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
pip install xformers
pip install -r requirements.txtAnda setidaknya membutuhkan VRAM 8GB.
python ./train_lora.py --config_file " ./examples/config.yaml " config.yaml :
prompts_file : " ./prompts.yaml "
pretrained_model :
name_or_path : " stabilityai/stable-diffusion-2-1 " # you can also use .ckpt or .safetensors models
v2 : true # true if model is v2.x
v_pred : true # true if model uses v-prediction
network :
type : " lierla " # or "c3lier"
rank : 4
alpha : 1.0
train :
precision : " bfloat16 "
noise_scheduler : " ddim " # or "ddpm", "lms", "euler_a"
iterations : 500
lr : 1e-4
optimizer : " AdamW "
lr_scheduler : " constant "
save :
name : " van_gogh "
path : " ./output "
per_steps : 200
precision : " bfloat16 "
logging :
use_wandb : false
verbose : false
other :
use_xformers : true prompts.yaml :
- target : " van gogh " # what word for erasing the positive concept from
positive : " van gogh " # concept to erase
unconditional : " " # word to take the difference from the positive concept
neutral : " " # starting point for conditioning the target
action : " erase " # erase or enhance
guidance_scale : 1.0
resolution : 512
dynamic_resolution : false
batch_size : 2Lihat Contoh Konfigurasi untuk detail lebih lanjut.
Catatan: Anda dapat menggunakan float16 tetapi tidak stabil dan tidak disarankan. Silakan gunakan bfloat16 atau float32.
Anda dapat menggunakan bobot pretrained pada WebUI Automatic1111.
? HuggingFace: https://huggingface.co/p1atdev/leco
Hasil oil painting of van gogh by himself :

oil painting of van gogh by himself
Steps : 20, Sampler: Euler a, CFG scale: 7, Seed: 3870472781, Size: 512x512, Model hash: cc6cb27103, Model: v1-5-pruned-emaonly, Clip skip: 2, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: van_gogh_4_last(db68853d039b), AddNet Weight A 1: -1.0, AddNet Weight B 1: -1.0, Script: X/Y/Z plot, X Type: AddNet Weight 1, X Values: "-1, 0, 1", Version: v1.3.0 Hasil painting of scenery by monet :

painting of scenery by monet
Steps : 20, Sampler: Euler a, CFG scale: 7, Seed: 1284787312, Size: 512x512, Model hash: cc6cb27103, Model: v1-5-pruned-emaonly, Clip skip: 2, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: van_gogh_4_last(db68853d039b), AddNet Weight A 1: -1.0, AddNet Weight B 1: -1.0, Script: X/Y/Z plot, X Type: AddNet Weight 1, X Values: "-1, 0, 1", Version: v1.3.0 Hasil mona lisa with jewelry :

mona lisa with jewelry
Steps : 20, Sampler: Euler a, CFG scale: 7, Seed: 3630495347, Size: 512x512, Model hash: 832eb50c0c, Model: v2-1_768-ema-pruned, Clip skip: 2, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: mona_lisa2_last(393beb35c4b1), AddNet Weight A 1: -1.0, AddNet Weight B 1: -1.0, Script: X/Y/Z plot, X Type: AddNet Weight 1, X Values: "-1, 0, 1", Version: v1.3.0 Hasil photo of a cute cat :

photo of a cute cat
Steps : 20, Sampler: Euler a, CFG scale: 7, Seed: 900866192, Size: 512x512, Model hash: 832eb50c0c, Model: v2-1_768-ema-pruned, Clip skip: 2, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: mona_lisa2_last(393beb35c4b1), AddNet Weight A 1: -1.0, AddNet Weight B 1: -1.0, Script: X/Y/Z plot, X Type: AddNet Weight 1, X Values: "-1, 0, 1", Version: v1.3.0Telinga kucing akan terpasang secara paksa saat menggunakan dengan berat 1.0 ~ 3.0.
Jika -1.0 ~ -3.0, telinga kucing tidak akan pernah muncul.
Pengaturan Pelatihan: Lihat Konfigurasi.

masterpiece, best quality, exceptional, best aesthetic, anime, 1girl, school uniform, upper body, smile
Negative prompt : worst quality, low quality, bad aesthetic, oldest, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry
Steps : 20, Sampler: Euler a, CFG scale: 7, Seed: 4103955758, Size: 512x512, Model hash: d38e779546, Model: wd-beta3-base-fp16, Clip skip: 2, Script: X/Y/Z plot, X Type: AddNet Weight 1, X Values: "0, 2, 3, 4", Version: v1.3.0Pengaturan Pelatihan: Lihat Konfigurasi.
Dengan "kehidupan nyata, Instagram":

real life, instagram, masterpiece, best quality, exceptional, best aesthetic, 1girl, cat ears, blue hair, school uniform, upper body
Negative prompt : worst quality, low quality, bad aesthetic, oldest, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry
Steps : 20, Sampler: Euler a, CFG scale: 7, Seed: 757542759, Size: 768x768, Model hash: d38e779546, Model: wd-beta3-base-fp16, Clip skip: 2, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: unreal_6_many_prompts_200steps(fff5917285da), AddNet Weight A 1: -1.0, AddNet Weight B 1: -1.0, Script: X/Y/Z plot, X Type: AddNet Weight 1, X Values: "-1, 0, 1", Version: v1.3.0Tanpa "kehidupan nyata, Instagram":

masterpiece, best quality, exceptional, best aesthetic,, 1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt,
Negative prompt : worst quality, low quality, bad aesthetic, oldest, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry
Steps : 20, Sampler: Euler a, CFG scale: 7, Seed: 2867636749, Size: 768x768, Model hash: d38e779546, Model: wd-beta3-base-fp16, Clip skip: 2, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: unreal_6_many_prompts_200steps(fff5917285da), AddNet Weight A 1: -1.0, AddNet Weight B 1: -1.0, Script: X/Y/Z plot, X Type: AddNet Weight 1, X Values: "-1, 0, 1", Version: v1.3.0 Saya sangat terinspirasi oleh dan pekerjaan saya bergantung pada upaya luar biasa dari proyek -proyek berikut. Saya ingin mengucapkan terima kasih yang mendalam kepada proyek -proyek ini dan pengembang mereka:
https://github.com/rohitgandikota/erasing: Menghapus konsep dari model difusi
https://github.com/cloneofsimo/lora: adaptasi rendah untuk fine-tuning difusi teks-ke-image cepat
https://github.com/kohya-ss/sd-scripts: pelatihan, generasi dan skrip utilitas untuk difusi yang stabil
https://github.com/ntc-ai/conceptmod: Modifikasi konsep dari model difusi menggunakan DSL