powsimR
Tolong juga berkonsultasi dengan halaman gitub saya tentang powsimr yang dibuat dengan pkgdown!
Untuk instalasi, paket R devtools diperlukan.
install.packages( " devtools " )
library( devtools )Saya merekomendasikan untuk menginstal terlebih dahulu dependensi secara manual dan kemudian POWSIMR. Jika Anda berencana menggunakan sihir untuk imputasi, maka silakan ikuti instruksi mereka untuk menginstal implementasi Python sebelum menginstal POWSIMR.
ipak <- function ( pkg , repository = c( " CRAN " , " Bioconductor " , " github " )) {
new.pkg <- pkg [ ! ( pkg %in% installed.packages()[, " Package " ])]
# new.pkg <- pkg
if (length( new.pkg )) {
if ( repository == " CRAN " ) {
install.packages( new.pkg , dependencies = TRUE )
}
if ( repository == " Bioconductor " ) {
if (strsplit( version [[ " version.string " ]], " " )[[ 1 ]][ 3 ] > " 4.0.0 " ) {
if ( ! requireNamespace( " BiocManager " )) {
install.packages( " BiocManager " )
}
BiocManager :: install( new.pkg , dependencies = TRUE , ask = FALSE )
}
if (strsplit( version [[ " version.string " ]], " " )[[ 1 ]][ 3 ] < " 3.6.0 " ) {
stop(message( " powsimR depends on packages and functions that are only available in R 4.0.0 and higher. " ))
}
}
if ( repository == " github " ) {
devtools :: install_github( new.pkg , build_vignettes = FALSE , force = FALSE ,
dependencies = TRUE )
}
}
}
# CRAN PACKAGES
cranpackages <- c( " broom " , " cobs " , " cowplot " , " data.table " , " doParallel " , " dplyr " ,
" DrImpute " , " fastICA " , " fitdistrplus " , " foreach " , " future " , " gamlss.dist " , " ggplot2 " ,
" ggpubr " , " ggstance " , " grDevices " , " grid " , " Hmisc " , " kernlab " , " MASS " , " magrittr " ,
" MBESS " , " Matrix " , " matrixStats " , " mclust " , " methods " , " minpack.lm " , " moments " ,
" msir " , " NBPSeq " , " nonnest2 " , " parallel " , " penalized " , " plyr " , " pscl " , " reshape2 " ,
" Rmagic " , " rsvd " , " Rtsne " , " scales " , " Seurat " , " snow " , " sctransform " , " stats " ,
" tibble " , " tidyr " , " truncnorm " , " VGAM " , " ZIM " , " zoo " )
ipak( cranpackages , repository = " CRAN " )
# BIOCONDUCTOR
biocpackages <- c( " bayNorm " , " baySeq " , " BiocGenerics " , " BiocParallel " , " DESeq2 " ,
" EBSeq " , " edgeR " , " IHW " , " iCOBRA " , " limma " , " Linnorm " , " MAST " , " monocle " , " NOISeq " ,
" qvalue " , " ROTS " , " RUVSeq " , " S4Vectors " , " scater " , " scDD " , " scde " , " scone " , " scran " ,
" SCnorm " , " SingleCellExperiment " , " SummarizedExperiment " , " zinbwave " )
ipak( biocpackages , repository = " Bioconductor " )
# GITHUB
githubpackages <- c( " cz-ye/DECENT " , " nghiavtr/BPSC " , " mohuangx/SAVER " , " statOmics/zingeR " ,
" Vivianstats/scImpute " )
ipak( githubpackages , repository = " github " )Untuk memeriksa apakah semua dependensi diinstal, Anda dapat menjalankan baris berikut:
powsimRdeps <- data.frame ( Package = c( cranpackages ,
biocpackages ,
sapply(strsplit( githubpackages , " / " ), " [[ " , 2 )),
stringsAsFactors = F )
ip <- as.data.frame(installed.packages()[,c( 1 , 3 : 4 )], stringsAsFactors = F )
ip.check <- cbind( powsimRdeps ,
Version = ip [match( powsimRdeps $ Package , rownames( ip )), " Version " ])
table(is.na( ip.check $ Version )) # all should be FALSESetelah menginstal dependensi, POWSIMR dapat diinstal dengan menggunakan DevTools juga.
devtools :: install_github( " bvieth/powsimR " , build_vignettes = TRUE , dependencies = FALSE )
library( " powsimR " )Alternatif, Anda dapat mencoba menginstal POWSIMR dan ketergantungannya secara langsung menggunakan DevTools:
devtools :: install_github( " bvieth/powsimR " )Sebagai contoh dan tips tentang menggunakan paket, silakan berkonsultasi dengan sketsa setelah pemasangan yang berhasil
browseVignettes( " powsimR " )Beberapa pengguna telah mengalami masalah menginstal POWSIMR karena kesalahan kompilasi sketsa atau karena mereka kehilangan paket R yang diperlukan untuk membangun sketsa, yaitu Knitr dan RMDFormat. Jika itu masalahnya, Anda dapat menginstal dependensi ini atau meninggalkan membangun sketsa (dengan mengatur build_vignettes ke false) dan membacanya di halaman gitub saya powsimr atau mengunduhnya sebagai file html di sini.
Perhatikan bahwa kesalahan "jumlah maksimal DLL yang dicapai ..." mungkin terjadi karena pemuatan banyak objek bersama oleh paket biokonduktor. Mulai ulang sesi R setelah menginstal dependensi / powsimr akan membantu. Dimulai dengan R versi 3.4.0, orang dapat mengatur variabel lingkungan 'r_max_num_dlls' ke angka yang lebih tinggi. Lihat ?Startup() untuk informasi lebih lanjut. Saya merekomendasikan untuk meningkatkan jumlah maksimum DLL yang dapat dimuat ke 500. Variabel lingkungan r_max_num_dlls dapat diatur dalam r_home/etc/renviron sebelum memulai R. untuk menemukan file renviron dan menambahkan baris berikut: r_max_num_dlls = xy di mana xy adalah jumlah DLLS. Pada mesin ubuntu saya, file renviron ada di/usr/lib/r/etc/dan saya dapat mengaturnya ke 500.
Selain itu, batas pengguna untuk file terbuka (UNIX: ULIMIT) mungkin harus diatur ke angka yang lebih tinggi untuk mengakomodasi peningkatan DLL. Silakan periksa halaman bantuan untuk Mac dan Linux untuk panduan.
Silakan gunakan entri berikut untuk mengutip Powsimr.
citation( " powsimR " )Powsimr diterbitkan dalam bioinformatika. Kertas pracetak juga di Biorxiv.
Silakan kirim laporan bug dan permintaan fitur dengan membuka edisi baru di halaman ini. Saya mencoba untuk tetap mengikuti perkembangan baru / perubahan metode yang diterapkan di POWSIMR, tetapi jika Anda menemukan kesalahan menjalankan saat menggunakan alat tertentu (misalnya untuk imputasi), maka saya menghargai jika Anda dapat memposting ini sebagai masalah.
R info sesi library( powsimR )
# > Loading required package: gamlss.dist
# > Loading required package: MASS
# > Registered S3 method overwritten by 'gdata':
# > method from
# > reorder.factor gplots
# > Warning: replacing previous import 'DECENT::lrTest' by 'MAST::lrTest' when
# > loading 'powsimR'
# > Warning: replacing previous import 'penalized::predict' by 'stats::predict' when
# > loading 'powsimR'
# > Warning: replacing previous import 'zinbwave::glmWeightedF' by
# > 'zingeR::glmWeightedF' when loading 'powsimR'
sessionInfo()
# > R version 4.1.2 (2021-11-01)
# > Platform: x86_64-pc-linux-gnu (64-bit)
# > Running under: Ubuntu 18.04.6 LTS
# >
# > Matrix products: default
# > BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
# > LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so
# >
# > locale:
# > [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
# > [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=en_US.UTF-8
# > [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
# > [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
# > [9] LC_ADDRESS=C LC_TELEPHONE=C
# > [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
# >
# > attached base packages:
# > [1] stats graphics grDevices utils datasets methods base
# >
# > other attached packages:
# > [1] powsimR_1.2.3 gamlss.dist_6.0-1 MASS_7.3-54
# >
# > loaded via a namespace (and not attached):
# > [1] mixtools_1.2.0 softImpute_1.4-1
# > [3] minpack.lm_1.2-1 lattice_0.20-45
# > [5] vctrs_0.3.8 fastICA_1.2-3
# > [7] mgcv_1.8-38 penalized_0.9-51
# > [9] blob_1.2.2 survival_3.2-13
# > [11] prodlim_2019.11.13 Rmagic_2.0.3
# > [13] later_1.3.0 nloptr_1.2.2.3
# > [15] DBI_1.1.1 R.utils_2.11.0
# > [17] rappdirs_0.3.3 SingleCellExperiment_1.16.0
# > [19] Linnorm_2.18.0 dqrng_0.3.0
# > [21] jpeg_0.1-9 zlibbioc_1.40.0
# > [23] MatrixModels_0.5-0 htmlwidgets_1.5.4
# > [25] mvtnorm_1.1-3 future_1.23.0
# > [27] UpSetR_1.4.0 parallel_4.1.2
# > [29] scater_1.22.0 irlba_2.3.3
# > [31] DEoptimR_1.0-9 Rcpp_1.0.7
# > [33] KernSmooth_2.23-20 DT_0.20
# > [35] promises_1.2.0.1 gdata_2.18.0
# > [37] DDRTree_0.1.5 DelayedArray_0.20.0
# > [39] limma_3.50.0 vegan_2.5-7
# > [41] Hmisc_4.6-0 ShortRead_1.52.0
# > [43] apcluster_1.4.8 RSpectra_0.16-0
# > [45] msir_1.3.3 mnormt_2.0.2
# > [47] digest_0.6.28 png_0.1-7
# > [49] bluster_1.4.0 qlcMatrix_0.9.7
# > [51] sctransform_0.3.2 cowplot_1.1.1
# > [53] pkgconfig_2.0.3 docopt_0.7.1
# > [55] DelayedMatrixStats_1.16.0 gower_0.2.2
# > [57] ggbeeswarm_0.6.0 iterators_1.0.13
# > [59] minqa_1.2.4 lavaan_0.6-9
# > [61] reticulate_1.22 SummarizedExperiment_1.24.0
# > [63] spam_2.7-0 beeswarm_0.4.0
# > [65] modeltools_0.2-23 xfun_0.28
# > [67] zoo_1.8-9 tidyselect_1.1.1
# > [69] ZIM_1.1.0 reshape2_1.4.4
# > [71] purrr_0.3.4 kernlab_0.9-29
# > [73] EDASeq_2.28.0 viridisLite_0.4.0
# > [75] snow_0.4-4 rtracklayer_1.54.0
# > [77] rlang_0.4.12 hexbin_1.28.2
# > [79] glue_1.5.0 RColorBrewer_1.1-2
# > [81] fpc_2.2-9 matrixStats_0.61.0
# > [83] MatrixGenerics_1.6.0 stringr_1.4.0
# > [85] lava_1.6.10 fields_13.3
# > [87] ggsignif_0.6.3 DESeq2_1.34.0
# > [89] recipes_0.1.17 SparseM_1.81
# > [91] httpuv_1.6.3 class_7.3-19
# > [93] BPSC_0.99.2 BiocNeighbors_1.12.0
# > [95] annotate_1.72.0 jsonlite_1.7.2
# > [97] XVector_0.34.0 tmvnsim_1.0-2
# > [99] bit_4.0.4 mime_0.12
# > [101] gridExtra_2.3 gplots_3.1.1
# > [103] Rsamtools_2.10.0 zingeR_0.1.0
# > [105] stringi_1.7.5 gmodels_2.18.1
# > [107] rhdf5filters_1.6.0 bitops_1.0-7
# > [109] maps_3.4.0 RSQLite_2.2.8
# > [111] tidyr_1.1.4 pheatmap_1.0.12
# > [113] data.table_1.14.2 rstudioapi_0.13
# > [115] GenomicAlignments_1.30.0 nlme_3.1-153
# > [117] qvalue_2.26.0 scran_1.22.1
# > [119] fastcluster_1.2.3 locfit_1.5-9.4
# > [121] scone_1.18.0 listenv_0.8.0
# > [123] cobs_1.3-4 R.oo_1.24.0
# > [125] prabclus_2.3-2 segmented_1.3-4
# > [127] dbplyr_2.1.1 BiocGenerics_0.40.0
# > [129] lifecycle_1.0.1 timeDate_3043.102
# > [131] ROTS_1.22.0 munsell_0.5.0
# > [133] hwriter_1.3.2 R.methodsS3_1.8.1
# > [135] moments_0.14 caTools_1.18.2
# > [137] codetools_0.2-18 coda_0.19-4
# > [139] Biobase_2.54.0 GenomeInfoDb_1.30.0
# > [141] vipor_0.4.5 htmlTable_2.3.0
# > [143] bayNorm_1.12.0 rARPACK_0.11-0
# > [145] xtable_1.8-4 SAVER_1.1.2
# > [147] ROCR_1.0-11 diptest_0.76-0
# > [149] formatR_1.11 lpsymphony_1.22.0
# > [151] abind_1.4-5 FNN_1.1.3
# > [153] parallelly_1.29.0 RANN_2.6.1
# > [155] sparsesvd_0.2 CompQuadForm_1.4.3
# > [157] BiocIO_1.4.0 GenomicRanges_1.46.1
# > [159] tibble_3.1.6 ggdendro_0.1.22
# > [161] cluster_2.1.2 future.apply_1.8.1
# > [163] Matrix_1.3-4 ellipsis_0.3.2
# > [165] prettyunits_1.1.1 shinyBS_0.61
# > [167] lubridate_1.8.0 NOISeq_2.38.0
# > [169] shinydashboard_0.7.2 mclust_5.4.8
# > [171] igraph_1.2.9 ggstance_0.3.5
# > [173] slam_0.1-49 testthat_3.1.0
# > [175] doSNOW_1.0.19 htmltools_0.5.2
# > [177] BiocFileCache_2.2.0 GenomicFeatures_1.46.1
# > [179] yaml_2.2.1 utf8_1.2.2
# > [181] XML_3.99-0.8 ModelMetrics_1.2.2.2
# > [183] ggpubr_0.4.0 DrImpute_1.0
# > [185] foreign_0.8-81 withr_2.4.2
# > [187] scuttle_1.4.0 fitdistrplus_1.1-6
# > [189] BiocParallel_1.28.2 aroma.light_3.24.0
# > [191] bit64_4.0.5 foreach_1.5.1
# > [193] robustbase_0.93-9 outliers_0.14
# > [195] Biostrings_2.62.0 combinat_0.0-8
# > [197] rsvd_1.0.5 ScaledMatrix_1.2.0
# > [199] iCOBRA_1.22.1 memoise_2.0.1
# > [201] evaluate_0.14 VGAM_1.1-5
# > [203] nonnest2_0.5-5 geneplotter_1.72.0
# > [205] permute_0.9-5 caret_6.0-90
# > [207] curl_4.3.2 fdrtool_1.2.17
# > [209] fansi_0.5.0 conquer_1.2.1
# > [211] edgeR_3.36.0 checkmate_2.0.0
# > [213] cachem_1.0.6 truncnorm_1.0-8
# > [215] tensorA_0.36.2 DECENT_1.1.0
# > [217] ellipse_0.4.2 rjson_0.2.20
# > [219] metapod_1.2.0 ggplot2_3.3.5
# > [221] rstatix_0.7.0 ggrepel_0.9.1
# > [223] scDD_1.18.0 tools_4.1.2
# > [225] sandwich_3.0-1 magrittr_2.0.1
# > [227] RCurl_1.98-1.5 car_3.0-12
# > [229] pbivnorm_0.6.0 bayesm_3.1-4
# > [231] xml2_1.3.2 EBSeq_1.34.0
# > [233] httr_1.4.2 assertthat_0.2.1
# > [235] rmarkdown_2.11 Rhdf5lib_1.16.0
# > [237] boot_1.3-28 globals_0.14.0
# > [239] R6_2.5.1 nnet_7.3-16
# > [241] progress_1.2.2 genefilter_1.76.0
# > [243] KEGGREST_1.34.0 gtools_3.9.2
# > [245] statmod_1.4.36 beachmat_2.10.0
# > [247] BiocSingular_1.10.0 rhdf5_2.38.0
# > [249] splines_4.1.2 carData_3.0-4
# > [251] colorspace_2.0-2 amap_0.8-18
# > [253] generics_0.1.1 stats4_4.1.2
# > [255] NBPSeq_0.3.0 compositions_2.0-2
# > [257] base64enc_0.1-3 baySeq_2.28.0
# > [259] pillar_1.6.4 HSMMSingleCell_1.14.0
# > [261] GenomeInfoDbData_1.2.7 plyr_1.8.6
# > [263] dotCall64_1.0-1 gtable_0.3.0
# > [265] SCnorm_1.16.0 monocle_2.22.0
# > [267] restfulr_0.0.13 knitr_1.36
# > [269] RcppArmadillo_0.10.7.3.0 latticeExtra_0.6-29
# > [271] biomaRt_2.50.1 IRanges_2.28.0
# > [273] fastmap_1.1.0 doParallel_1.0.16
# > [275] pscl_1.5.5 flexmix_2.3-17
# > [277] quantreg_5.86 AnnotationDbi_1.56.2
# > [279] broom_0.7.10 filelock_1.0.2
# > [281] scales_1.1.1 arm_1.12-2
# > [283] backports_1.4.0 plotrix_3.8-2
# > [285] IHW_1.22.0 S4Vectors_0.32.3
# > [287] densityClust_0.3 ipred_0.9-12
# > [289] lme4_1.1-27.1 hms_1.1.1
# > [291] Rtsne_0.15 dplyr_1.0.7
# > [293] shiny_1.7.1 grid_4.1.2
# > [295] Formula_1.2-4 blockmodeling_1.0.5
# > [297] crayon_1.4.2 MAST_1.20.0
# > [299] RUVSeq_1.28.0 pROC_1.18.0
# > [301] sparseMatrixStats_1.6.0 viridis_0.6.2
# > [303] rpart_4.1-15 zinbwave_1.16.0
# > [305] compiler_4.1.2