Tulis acara Tensorboard dengan panggilan fungsi sederhana.
Rilis saat ini (v2.6.2.2) diuji pada Anaconda3, dengan Pytorch 1.11.0 / TorchVision 0.12 / Tensorboard 2.9.0.
Dukung scalar , image , figure , histogram , audio , text , graph , onnx_graph , embedding , pr_curve , mesh , hyper-parameters dan ringkasan video .
FAQ
pip install tensorboardX
atau membangun dari sumber:
pip install 'git+https://github.com/lanpa/tensorboardX'
Anda secara opsional dapat menginstal crc32c untuk mempercepat.
pip install crc32c
Mulai dari Tensorboardx 2.1, Anda perlu menginstal soundfile untuk fungsi add_audio() (200x Speedup).
pip install soundfile
python examples/demo.pytensorboard --logdir runs # demo.py
import torch
import torchvision . utils as vutils
import numpy as np
import torchvision . models as models
from torchvision import datasets
from tensorboardX import SummaryWriter
resnet18 = models . resnet18 ( False )
writer = SummaryWriter ()
sample_rate = 44100
freqs = [ 262 , 294 , 330 , 349 , 392 , 440 , 440 , 440 , 440 , 440 , 440 ]
for n_iter in range ( 100 ):
dummy_s1 = torch . rand ( 1 )
dummy_s2 = torch . rand ( 1 )
# data grouping by `slash`
writer . add_scalar ( 'data/scalar1' , dummy_s1 [ 0 ], n_iter )
writer . add_scalar ( 'data/scalar2' , dummy_s2 [ 0 ], n_iter )
writer . add_scalars ( 'data/scalar_group' , { 'xsinx' : n_iter * np . sin ( n_iter ),
'xcosx' : n_iter * np . cos ( n_iter ),
'arctanx' : np . arctan ( n_iter )}, n_iter )
dummy_img = torch . rand ( 32 , 3 , 64 , 64 ) # output from network
if n_iter % 10 == 0 :
x = vutils . make_grid ( dummy_img , normalize = True , scale_each = True )
writer . add_image ( 'Image' , x , n_iter )
dummy_audio = torch . zeros ( sample_rate * 2 )
for i in range ( x . size ( 0 )):
# amplitude of sound should in [-1, 1]
dummy_audio [ i ] = np . cos ( freqs [ n_iter // 10 ] * np . pi * float ( i ) / float ( sample_rate ))
writer . add_audio ( 'myAudio' , dummy_audio , n_iter , sample_rate = sample_rate )
writer . add_text ( 'Text' , 'text logged at step:' + str ( n_iter ), n_iter )
for name , param in resnet18 . named_parameters ():
writer . add_histogram ( name , param . clone (). cpu (). data . numpy (), n_iter )
# needs tensorboard 0.4RC or later
writer . add_pr_curve ( 'xoxo' , np . random . randint ( 2 , size = 100 ), np . random . rand ( 100 ), n_iter )
dataset = datasets . MNIST ( 'mnist' , train = False , download = True )
images = dataset . test_data [: 100 ]. float ()
label = dataset . test_labels [: 100 ]
features = images . view ( 100 , 784 )
writer . add_embedding ( features , metadata = label , label_img = images . unsqueeze ( 1 ))
# export scalar data to JSON for external processing
writer . export_scalars_to_json ( "./all_scalars.json" )
writer . close ()
Tensorboardx sekarang mendukung logging langsung ke Comet. Comet adalah solusi berbasis cloud gratis yang memungkinkan Anda untuk secara otomatis melacak, membandingkan, dan menjelaskan eksperimen Anda. Ini menambahkan banyak fungsi di atas papan tensor seperti manajemen dataset, eksperimen yang berbeda, melihat kode yang menghasilkan hasil dan banyak lagi.
Ini bekerja di luar kotak dan hanya membutuhkan baris kode tambahan. Lihat contoh kode lengkap dalam buku catatan Colab ini

Untuk menambahkan lebih banyak kutu untuk slider (tampilkan lebih banyak riwayat gambar), periksa #44 atau TensorFlow/Tensorboard #1138