Underthesea adalah:
? Perangkat NLP Vietnam. Undhesea adalah serangkaian set data modul Python open source dan tutorial yang mendukung penelitian dan pengembangan dalam pemrosesan bahasa alami Vietnam. Kami menyediakan API yang sangat mudah untuk dengan cepat menerapkan model NLP pretrained ke teks Vietnam Anda, seperti segmentasi kata, penandaan bagian-of-speech (POS), Named Entity Recognition (NER), klasifikasi teks dan penguraian ketergantungan.
? Perangkat lunak open-source. Undhesea diterbitkan di bawah Lisensi Lisensi Publik Umum GNU v3.0. Izin lisensi copyleft yang kuat ini dikondisikan untuk menyediakan kode sumber lengkap dari karya dan modifikasi berlisensi, yang mencakup karya yang lebih besar menggunakan pekerjaan berlisensi, di bawah lisensi yang sama.
? Dukung kami! Setiap dukungan membantu kami mencapai tujuan kami. Terima kasih banyak. ???
? Hai! Pernahkah Anda mendengar tentang LLMS , model berbasis prompt ? Nah, coba tebak? Mulai dari Underthesea versi 6.7.0, Anda sekarang dapat menyelam lebih dalam dengan fitur super keren ini untuk klasifikasi teks! Menyelam dan membuat percikan! ?
Untuk menginstal undhesea, cukup:
$ pip install underthesea
?Kepuasan, dijamin.
Penggunaan
> >> from underthesea import sent_tokenize
> >> text = 'Taylor cho biết lúc đầu cô cảm thấy ngại với cô bạn thân Amanda nhưng rồi mọi thứ trôi qua nhanh chóng. Amanda cũng thoải mái với mối quan hệ này.'
> >> sent_tokenize ( text )
[
"Taylor cho biết lúc đầu cô cảm thấy ngại với cô bạn thân Amanda nhưng rồi mọi thứ trôi qua nhanh chóng." ,
"Amanda cũng thoải mái với mối quan hệ này."
]Penggunaan
> >> from underthesea import text_normalize
> >> text_normalize ( "Ðảm baỏ chất lựơng phòng thí nghịêm hoá học" )
"Đảm bảo chất lượng phòng thí nghiệm hóa học"Penggunaan
> >> from underthesea import word_tokenize
> >> text = "Chàng trai 9X Quảng Trị khởi nghiệp từ nấm sò"
> >> word_tokenize ( text )
[ "Chàng trai" , "9X" , "Quảng Trị" , "khởi nghiệp" , "từ" , "nấm" , "sò" ]
> >> word_tokenize ( sentence , format = "text" )
"Chàng_trai 9X Quảng_Trị khởi_nghiệp từ nấm sò"
> >> text = "Viện Nghiên Cứu chiến lược quốc gia về học máy"
> >> fixed_words = [ "Viện Nghiên Cứu" , "học máy" ]
> >> word_tokenize ( text , fixed_words = fixed_words )
"Viện_Nghiên_Cứu chiến_lược quốc_gia về học_máy"Penggunaan
> >> from underthesea import pos_tag
> >> pos_tag ( 'Chợ thịt chó nổi tiếng ở Sài Gòn bị truy quét' )
[( 'Chợ' , 'N' ),
( 'thịt' , 'N' ),
( 'chó' , 'N' ),
( 'nổi tiếng' , 'A' ),
( 'ở' , 'E' ),
( 'Sài Gòn' , 'Np' ),
( 'bị' , 'V' ),
( 'truy quét' , 'V' )]Penggunaan
> >> from underthesea import chunk
> >> text = 'Bác sĩ bây giờ có thể thản nhiên báo tin bệnh nhân bị ung thư?'
> >> chunk ( text )
[( 'Bác sĩ' , 'N' , 'B-NP' ),
( 'bây giờ' , 'P' , 'B-NP' ),
( 'có thể' , 'R' , 'O' ),
( 'thản nhiên' , 'A' , 'B-AP' ),
( 'báo' , 'V' , 'B-VP' ),
( 'tin' , 'N' , 'B-NP' ),
( 'bệnh nhân' , 'N' , 'B-NP' ),
( 'bị' , 'V' , 'B-VP' ),
( 'ung thư' , 'N' , 'B-NP' ),
( '?' , 'CH' , 'O' )]⚛️⚛️ Model pembelajaran yang dalam
$ pip install underthesea[deep] > >> from underthesea import dependency_parse
> >> text = 'Tối 29/11, Việt Nam thêm 2 ca mắc Covid-19'
> >> dependency_parse ( text )
[( 'Tối' , 5 , 'obl:tmod' ),
( '29/11' , 1 , 'flat:date' ),
( ',' , 1 , 'punct' ),
( 'Việt Nam' , 5 , 'nsubj' ),
( 'thêm' , 0 , 'root' ),
( '2' , 7 , 'nummod' ),
( 'ca' , 5 , 'obj' ),
( 'mắc' , 7 , 'nmod' ),
( 'Covid-19' , 8 , 'nummod' )] ⚛️Penggunaan
> >> from underthesea import ner
> >> text = 'Chưa tiết lộ lịch trình tới Việt Nam của Tổng thống Mỹ Donald Trump'
> >> ner ( text )
[( 'Chưa' , 'R' , 'O' , 'O' ),
( 'tiết lộ' , 'V' , 'B-VP' , 'O' ),
( 'lịch trình' , 'V' , 'B-VP' , 'O' ),
( 'tới' , 'E' , 'B-PP' , 'O' ),
( 'Việt Nam' , 'Np' , 'B-NP' , 'B-LOC' ),
( 'của' , 'E' , 'B-PP' , 'O' ),
( 'Tổng thống' , 'N' , 'B-NP' , 'O' ),
( 'Mỹ' , 'Np' , 'B-NP' , 'B-LOC' ),
( 'Donald' , 'Np' , 'B-NP' , 'B-PER' ),
( 'Trump' , 'Np' , 'B-NP' , 'I-PER' )]⚛️ Model pembelajaran yang dalam
$ pip install underthesea[deep] > >> from underthesea import ner
> >> text = "Bộ Công Thương xóa một tổng cục, giảm nhiều đầu mối"
> >> ner ( text , deep = True )
[
{ 'entity' : 'B-ORG' , 'word' : 'Bộ' },
{ 'entity' : 'I-ORG' , 'word' : 'Công' },
{ 'entity' : 'I-ORG' , 'word' : 'Thương' }
] ⚡Penggunaan
> >> from underthesea import classify
> >> classify ( 'HLV đầu tiên ở Premier League bị sa thải sau 4 vòng đấu' )
[ 'The thao' ]
> >> classify ( 'Hội đồng tư vấn kinh doanh Asean vinh danh giải thưởng quốc tế' )
[ 'Kinh doanh' ]
>> classify ( 'Lãi suất từ BIDV rất ưu đãi' , domain = 'bank' )
[ 'INTEREST_RATE' ]⚡ Model berbasis prompt
$ pip install underthesea[prompt]
$ export OPENAI_API_KEY=YOUR_KEY > >> from underthesea import classify
> >> text = "HLV ngoại đòi gần tỷ mỗi tháng dẫn dắt tuyển Việt Nam"
> >> classify ( text , model = 'prompt' )
Thể thaoPenggunaan
> >> from underthesea import sentiment
> >> sentiment ( 'hàng kém chất lg,chăn đắp lên dính lông lá khắp người. thất vọng' )
'negative'
> >> sentiment ( 'Sản phẩm hơi nhỏ so với tưởng tượng nhưng chất lượng tốt, đóng gói cẩn thận.' )
'positive'
> >> sentiment ( 'Đky qua đường link ở bài viết này từ thứ 6 mà giờ chưa thấy ai lhe hết' , domain = 'bank' )
[ 'CUSTOMER_SUPPORT#negative' ]
> >> sentiment ( 'Xem lại vẫn thấy xúc động và tự hào về BIDV của mình' , domain = 'bank' )
[ 'TRADEMARK#positive' ]⚛️Lang mendeteksi API. Terima kasih untuk pekerjaan yang luar biasa dari FastText
Instal Extended Dependencies dan Model
```bash
$ pip install underthesea[langdetect]
```
Contoh penggunaan dalam skrip
```python
>>> from underthesea import lang_detect
>>> lang_detect("Cựu binh Mỹ trả nhật ký nhẹ lòng khi thấy cuộc sống hòa bình tại Việt Nam")
vi
```
⚛️SMS ke API pidato. Terima kasih untuk pekerjaan yang luar biasa dari NTT123/Viettts
Instal Extended Dependencies dan Model
```bash
$ pip install underthesea[wow]
$ underthesea download-model VIET_TTS_V0_4_1
```
Contoh penggunaan dalam skrip
```python
>>> from underthesea.pipeline.say import say
>>> say("Cựu binh Mỹ trả nhật ký nhẹ lòng khi thấy cuộc sống hòa bình tại Việt Nam")
A new audio file named `sound.wav` will be generated.
```
Contoh penggunaan dalam baris perintah
```sh
$ underthesea say "Cựu binh Mỹ trả nhật ký nhẹ lòng khi thấy cuộc sống hòa bình tại Việt Nam"
```
Daftar sumber daya
$ underthesea list-data
| Name | Type | License | Year | Directory |
| ---------------------------+-------------+---------+------+------------------------------------ |
| CP_Vietnamese_VLC_v2_2022 | Plaintext | Open | 2023 | datasets/CP_Vietnamese_VLC_v2_2022 |
| UIT_ABSA_RESTAURANT | Sentiment | Open | 2021 | datasets/UIT_ABSA_RESTAURANT |
| UIT_ABSA_HOTEL | Sentiment | Open | 2021 | datasets/UIT_ABSA_HOTEL |
| SE_Vietnamese-UBS | Sentiment | Open | 2020 | datasets/SE_Vietnamese-UBS |
| CP_Vietnamese-UNC | Plaintext | Open | 2020 | datasets/CP_Vietnamese-UNC |
| DI_Vietnamese-UVD | Dictionary | Open | 2020 | datasets/DI_Vietnamese-UVD |
| UTS2017-BANK | Categorized | Open | 2017 | datasets/UTS2017-BANK |
| VNTQ_SMALL | Plaintext | Open | 2012 | datasets/LTA |
| VNTQ_BIG | Plaintext | Open | 2012 | datasets/LTA |
| VNESES | Plaintext | Open | 2012 | datasets/LTA |
| VNTC | Categorized | Open | 2007 | datasets/VNTC |
$ underthesea list-data --allDownload Resources
$ underthesea download-data CP_Vietnamese_VLC_v2_2022
Resource CP_Vietnamese_VLC_v2_2022 is downloaded in ~ /.underthesea/datasets/CP_Vietnamese_VLC_v2_2022 folderApakah Anda ingin berkontribusi dengan pengembangan undhesea? Besar! Harap baca detail lebih lanjut di Contributing.RST
Jika Anda menemukan proyek ini bermanfaat dan ingin mendukung pekerjaan kami, Anda dapat membelikan kami kopi ☕.
Dukungan Anda adalah dorongan terbesar kami?!