Gunakan: pip install nlpcda
Open Source tidak mudah, selamat datang di Star?
PYPI: https: //pypi.org/project/nlpcda/
Alat Peningkatan Data Cina Satu-Klik, mendukung:
BIO Kelassimbert untuk menghasilkan kalimat yang serupa经过细节特殊处理,比如不改变年月日数字,尽量保证不改变原文语义。即使改变也能被猜出来、能被猜出来、能被踩出来、能被菜粗来、被菜粗、能菜粗来
文本ke语音> Pengenalan语音Kembali ke文本: Hasilkan Pidato pada Teks Berdasarkan FastSpeech2, dan Teks Pengenalan Suara Berdasarkan WAV2VEC2contoh:
Input: Kantor Berita Xinhua Berita Beijing>
fastspeech2> x.wavx.wav>
wav2vec2> output: xinhua mengatur berita beijing
Hari ini adalah berita 29 Agustus> Hari ini adalah berita 29 Agustus
Saya memiliki 1234 apel> Saya memiliki 1234 apel
nlpcda
️ Jika Anda hanya mencetak skor akurasi Anda, Anda umumnya tidak akan mendapatkan peningkatan skor dengan paket ini.
parameter:
Ini adalah jalur file teks, kontennya sebagai berikut:
Entitas 1
Entitas 2
...
Entitas n
from nlpcda import Randomword
test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''
smw = Randomword ( create_num = 3 , change_rate = 0.3 )
rs1 = smw . replace ( test_str )
print ( '随机实体替换>>>>>>' )
for s in rs1 :
print ( s )
'''
随机实体替换>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:长兴国际;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:浙江世宝;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
'''parameter:
Ini adalah jalur file teks, kontennya adalah sebagai berikut (dipisahkan oleh spasi):
AA01A0 manusia semuanya manusia
ID2 Sinonim B1 Sinonim B2 ... Sinonim BK
...
IDN Sinonim N1 Sinonim N2
from nlpcda import Similarword
test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''
smw = Similarword ( create_num = 3 , change_rate = 0.3 )
rs1 = smw . replace ( test_str )
print ( '随机同义词替换>>>>>>' )
for s in rs1 :
print ( s )
'''
随机同义词替换>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数量增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;斯nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
'''
parameter:
Ini adalah jalur file teks, kontennya adalah sebagai berikut (terpisah):
de del Dede De technet till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till till
...
Pinyin n word n1 word n2
from nlpcda import Homophone
test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''
smw = Homophone ( create_num = 3 , change_rate = 0.3 )
rs1 = smw . replace ( test_str )
print ( '随机近义字替换>>>>>>' )
for s in rs1 :
print ( s )
'''
随机近义字替换>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今填是2020年3月8日11:40,天气晴朗,天气很不错,空气痕好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
鷓是个实体:58同乘;今天是2020年3月8日11:40,天迄晴朗,天气很不错,空气很儫,不差;这个nlpcad包,用于方便一键数据增强,犐有效增牆NLP模型的橎化性能、减少波动、抵抗对抗攻击
'''parameter:
from nlpcda import RandomDeleteChar
test_str = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''
smw = RandomDeleteChar ( create_num = 3 , change_rate = 0.3 )
rs1 = smw . replace ( test_str )
print ( '随机字删除>>>>>>' )
for s in rs1 :
print ( s )
'''
随机字删除>>>>>>
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气,不差;这个nlpcad包用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗
个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型泛化性能、减少波动、抵抗对抗
'''Masukkan direktori data NER yang ditandai, jalur file yang ditandai yang perlu ditingkatkan, dan jumlah yang ditingkatkan, dan Anda dapat meningkatkannya dengan satu klik.
Parameter kelas NER:
Tag 1 t
North t B-Loc
Beijing t i-loc
Hari ini t o
Hari o
Sangat o
Hot o
. ke
Parameter fungsi panggilan augment ()
contoh:
from nlpcda import Ner
ner = Ner ( ner_dir_name = 'ner_data' ,
ignore_tag_list = [ 'O' ],
data_augument_tag_list = [ 'P' , 'LOC' , 'ORG' ],
augument_size = 3 , seed = 0 )
data_sentence_arrs , data_label_arrs = ner . augment ( file_name = '0.txt' )
# 3条增强后的句子、标签 数据,len(data_sentence_arrs)==3
# 你可以写文件输出函数,用于写出,作为后续训练等
print ( data_sentence_arrs , data_label_arrs ) from nlpcda import CharPositionExchange
ts = '''这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击'''
smw = CharPositionExchange ( create_num = 3 , change_rate = 0.3 , char_gram = 3 , seed = 1 )
rs = smw . replace ( ts )
for s in rs :
print ( s )
'''
这是个实体:58同城;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,不差;这个nlpcad包,用于方便一键数据增强,可有效增强NLP模型的泛化性能、减少波动、抵抗对抗攻击
这实个是体:58城同;今天是2020年3月8日11:40,天气晴朗,天气很不错,空气很好,差不;这个nlpcad包,便用一数方增键强据于,增有效可强NLP模型性泛化的能、动少减波、抵对攻抗抗击
这是个体实:58城同;今是天2020年3月8日11:40,朗气晴天,天气很错不,空好很气,不差;个这nlpcad包,方便键一据增用数于强,可有效强增NLP模型的性化泛能、动减波少、抗抗击抵对攻
'''parameter:
Ini adalah jalur file teks, kontennya adalah sebagai berikut (( t) terpisah):
0 nol
1 satu ①
...
9 sembilan sembilan ⑨
from nlpcda import EquivalentChar
test_str = '''今天是2020年3月8日11:40,天气晴朗,天气很不错。'''
s = EquivalentChar ( create_num = 3 , change_rate = 0.3 )
# 添加等价字
s . add_equivalent_list ([ '看' , '瞅' ])
res = s . replace ( test_str )
print ( '等价字替换>>>>>>' )
for s in res :
print ( s )
'''
等价字替换>>>>>>
今天是2020年3月8日11:40,天气晴朗,天气很不错。
今天是二〇2〇年3月八日1①:4〇,天气晴朗,天气很不错。
今天是二0贰零年3月捌日11:40,天气晴朗,天气很不错
'''Digunakan sebelum digunakan, tambahkan efek kata participle
from nlpcda import Randomword
from nlpcda import Similarword
from nlpcda import Homophone
from nlpcda import RandomDeleteChar
from nlpcda import Ner
from nlpcda import CharPositionExchange
Randomword . add_word ( '小明' )
Randomword . add_words ([ '小明' , '小白' , '天地良心' ])
# Similarword,Homophone,RandomDeleteChar 同上1. Catatan yang ditingkatkan dari implementasi pertukaran terjemahan bahasa Cina-Inggris Baidu:
Terapkan untuk appid Anda, Secretkey: http://api.fanyi.baidu.com/api/trans
from nlpcda import baidu_translate
zh = '天气晴朗,天气很不错,空气很好'
# 申请你的 appid、secretKey
# 两遍洗数据法(回来的中文一般和原来不一样,要是一样,就不要了,靠运气?)
en_s = baidu_translate ( content = zh , appid = 'xxx' , secretKey = 'xxx' , t_from = 'zh' , t_to = 'en' )
zh_s = baidu_translate ( content = en_s , appid = 'xxx' , secretKey = 'xxx' , t_from = 'en' , t_to = 'zh' )
print ( zh_s )2. Peningkatan Implementasi Pertukaran Terjemahan Google
Paket PIP: Py-googletrans
API Terjemahan Google GRATIS, membutuhkan pemblokiran dinding dan tidak stabil
https://py-googletrans.readthedocs.io/en/latest
Pip Instal Googletrans
from googletrans import Translator
def googletrans ( content = '一个免费的谷歌翻译API' , t_from = 'zh-cn' , t_to = 'en' ):
translator = Translator ()
s = translator . translate ( text = content , dest = t_to , src = t_from )
return s . textSumber: https://github.com/zhuiyitechnology/pretrain-podels
Referensi: https://github.com/zhuiyitechnology/simbert
Unduh model apa pun di dalamnya, mendekompresnya ke posisi apa pun dan menetapkannya ke variabel model_path :
| nama | Ukuran data pelatihan | Ukuran kosa kata | Ukuran model | Alamat unduhan |
|---|---|---|---|---|
| Simbert Tiny | 22 juta kelompok hukuman serupa | 13685 | 26MB | Baidu Netdisk (1TP7) |
| Simbert Small | 22 juta kelompok hukuman serupa | 13685 | 49MB | Baidu Netdisk (NU67) |
| BASE SIMBERT | 22 juta kelompok hukuman serupa | 13685 | 344MB | Baidu Netdisk (6xHQ) |
parameter:
Referensi Lingkungan (Instalasi Manual):
keras==2.3.1
bert4keras==0.7.7
# tensorflow==1.13.1
tensorflow-gpu==1.13.1
from nlpcda import Simbert
config = {
'model_path' : '/xxxx/chinese_simbert_L-12_H-768_A-12' ,
'CUDA_VISIBLE_DEVICES' : '0,1' ,
'max_len' : 32 ,
'seed' : 1
}
simbert = Simbert ( config = config )
sent = '把我的一个亿存银行安全吗'
synonyms = simbert . replace ( sent = sent , create_num = 5 )
print ( synonyms )
'''
[('我的一个亿,存银行,安全吗', 0.9871675372123718),
('把一个亿存到银行里安全吗', 0.9352194666862488),
('一个亿存银行安全吗', 0.9330801367759705),
('一个亿的存款存银行安全吗', 0.92387855052948),
('我的一千万存到银行安不安全', 0.9014463424682617)]
'''