
Openagi bertujuan untuk membuat agen seperti manusia dapat diakses oleh semua orang, dengan demikian membuka jalan menuju agen-agen terbuka dan, pada akhirnya, AGI untuk semua orang. Kami sangat percaya pada kekuatan transformatif AI dan yakin bahwa inisiatif ini akan secara signifikan berkontribusi untuk memecahkan banyak masalah kehidupan nyata. Saat ini, Openagi dirancang untuk menawarkan kepada pengembang kerangka kerja untuk menciptakan agen seperti manusia yang otonom.
Bergabunglah dengan Komunitas Perselisihan kami! # For Mac and Linux users
python3 -m venv venv
source venv/bin/activate
# For Windows users
python -m venv venv
venv/scripts/activatepip install openagiatau
git clone https://github.com/aiplanethub/openagi.git
pip install -e .
Pekerja digunakan untuk membuat arsitektur multi-agen.
Ikuti contoh ini untuk membuat agen perencana perjalanan yang membantu Anda merencanakan rencana perjalanan ke SF.
from openagi . agent import Admin
from openagi . planner . task_decomposer import TaskPlanner
from openagi . actions . tools . ddg_search import DuckDuckGoSearch
from openagi . llms . openai import OpenAIModel
from openagi . worker import Worker
plan = TaskPlanner ( human_intervene = False )
action = DuckDuckGoSearch
import os
os . environ [ 'OPENAI_API_KEY' ] = "sk-xxxx"
config = OpenAIModel . load_from_env_config ()
llm = OpenAIModel ( config = config )
trip_plan = Worker (
role = "Trip Planner" ,
instructions = """
User loves calm places, suggest the best itinerary accordingly.
""" ,
actions = [ action ],
max_iterations = 10 )
admin = Admin (
llm = llm ,
actions = [ action ],
planner = plan ,
)
admin . assign_workers ([ trip_plan ])
res = admin . run (
query = "Give me total 3 Days Trip to San francisco Bay area" ,
description = "You are a knowledgeable local guide with extensive information about the city, it's attractions and customs" ,
)
print ( res )Mari kita membangun agen olahraga sekarang yang dapat berjalan secara mandiri tanpa pekerja.
from openagi . planner . task_decomposer import TaskPlanner
from openagi . actions . tools . tavilyqasearch import TavilyWebSearchQA
from openagi . agent import Admin
from openagi . llms . gemini import GeminiModel
import os
os . environ [ 'TAVILY_API_KEY' ] = "<replace with Tavily key>"
os . environ [ 'GOOGLE_API_KEY' ] = "<replace with Gemini key>"
os . environ [ 'Gemini_MODEL' ] = "gemini-1.5-flash"
os . environ [ 'Gemini_TEMP' ] = "0.1"
gemini_config = GeminiModel . load_from_env_config ()
llm = GeminiModel ( config = gemini_config )
# define the planner
plan = TaskPlanner ( autonomous = True , human_intervene = True )
admin = Admin (
actions = [ TavilyWebSearchQA ],
planner = plan ,
llm = llm ,
)
res = admin . run (
query = "I need cricket updates from India vs Sri lanka 2024 ODI match in Sri Lanka" ,
description = f"give me the results of India vs Sri Lanka ODI and respective Man of the Match" ,
)
print ( res )Dengan LTM, agen openagi sekarang dapat:
import os
from openagi . agent import Admin
from openagi . llms . openai import OpenAIModel
from openagi . memory import Memory
from openagi . planner . task_decomposer import TaskPlanner
from openagi . worker import Worker
from openagi . actions . tools . ddg_search import DuckDuckGoSearch
memory = Memory ( long_term = True )
os . environ [ 'OPENAI_API_KEY' ] = "-"
config = OpenAIModel . load_from_env_config ()
llm = OpenAIModel ( config = config )
web_searcher = Worker (
role = "Web Researcher" ,
instructions = """
You are tasked with conducting web searches using DuckDuckGo.
Find the most relevant and accurate information based on the user's query.
""" ,
actions = [ DuckDuckGoSearch ],
)
admin = Admin (
actions = [ DuckDuckGoSearch ],
planner = TaskPlanner ( human_intervene = False ),
memory = memory ,
llm = llm ,
)
admin . assign_workers ([ web_searcher ])
query = input ( "Enter your search query: " )
description = f"Find accurate and relevant information for the query: { query } "
res = admin . run ( query = query , description = description )
print ( res )Untuk lebih banyak pertanyaan, temukan dokumentasi untuk openagi di openagi.aiplanet.com
Untuk pertanyaan/saran/dukungan apa pun yang menghubungkan kami di [email protected]
Openagi tumbuh subur di lanskap yang berkembang pesat dari proyek open-source. Kami dengan sepenuh hati menyambut kontribusi dalam berbagai kapasitas, baik itu melalui fitur inovatif, peningkatan infrastruktur, atau dokumentasi olahan.
Untuk panduan komprehensif tentang proses kontribusi, silakan klik di sini.