japanese clip
v0.2.0

Ce référentiel comprend des codes pour les variantes de clip japonais (pré-formation d'image linguistique contrastive) par Rinna Co., Ltd.
| Table des matières |
|---|
| Nouvelles |
| Modèles pré-entraînés |
| Usage |
| Citation |
| Licence |
V0.2.0 a été publié!
rinna/japanese-cloob-vit-b-16 atteint 54,64.scripts/example.py ) pour la classification ImageNet zéro-shot. Ces modèles ont été nettoyés pour les japonais sur la base des modèles Openai 80.| Nom du modèle | Top1 * | Top5 * |
|---|---|---|
| Rinna / Japanese-Coob-Vit-B-16 | 54.64 | 72.86 |
| Rinna / Japanese-Clip-Vit-B-16 | 50,69 | 72.35 |
| sonoisa / clip-vit-b-32-japonais-v1 | 38.88 | 60,71 |
| picolatement multilingue | 14.36 | 27.28 |
* Ensemble de validation ImageNet Zero-Shot Set-K.
$ pip install git+https://github.com/rinnakk/japanese-clip.git from PIL import Image
import torch
import japanese_clip as ja_clip
device = "cuda" if torch . cuda . is_available () else "cpu"
# ja_clip.available_models()
# ['rinna/japanese-clip-vit-b-16', 'rinna/japanese-cloob-vit-b-16']
# If you want v0.1.0 models, set `revision='v0.1.0'`
model , preprocess = ja_clip . load ( "rinna/japanese-clip-vit-b-16" , cache_dir = "/tmp/japanese_clip" , device = device )
tokenizer = ja_clip . load_tokenizer ()
image = preprocess ( Image . open ( "./data/dog.jpeg" )). unsqueeze ( 0 ). to ( device )
encodings = ja_clip . tokenize (
texts = [ "犬" , "猫" , "象" ],
max_seq_len = 77 ,
device = device ,
tokenizer = tokenizer , # this is optional. if you don't pass, load tokenizer each time
)
with torch . no_grad ():
image_features = model . get_image_features ( image )
text_features = model . get_text_features ( ** encodings )
text_probs = ( 100.0 * image_features @ text_features . T ). softmax ( dim = - 1 )
print ( "Label probs:" , text_probs ) # prints: [[1.0, 0.0, 0.0]] Pour citer ce référentiel:
@inproceedings{japanese-clip,
author = {シーン 誠, 趙 天雨, 沢田 慶},
title = {日本語における言語画像事前学習モデルの構築と公開},
booktitle= {The 25th Meeting on Image Recognition and Understanding},
year = 2022,
month = July,
}La licence Apache 2.0