brewval
1.0.0
À l'ère de plusieurs fournisseurs de modèles et modèles de grande langue qui diffèrent en fonction des capacités, de la vitesse et des coûts où il est nécessaire d'évaluer les invites sur différents fournisseurs et modèles pour choisir la combinaison la plus appropriée pour la tâche donnée.
from typing import Dict
from brewval . model import Prompt , Label
from brewval . eval import Evaluator
from langchain . llms import OpenAI , BaseLLM
prompt = Prompt ( """
Description: Feelings of disappointment, grief, hopelessness, disinterest, and dampened mood.
Emotion: sadness
Description: muscles become tense, your heart rate and respiration increase, and your mind becomes more alert, priming your body to either run from the danger or stand and fight
Emotion: fear
Description: {description}
Emotion: {result}""" )
labels = [
Label ( 'fear' , { 'description' : 'heart rate and respiration increase' }),
Label ( 'surprise' , { 'description' : 'quite brief and is characterized by a physiological startle response following something unexpected' }),
Label ( 'anger' , { 'description' : 'Characterized by feelings of hostility, agitation, frustration, and antagonism towards others.' })
]
models : Dict [ str , BaseLLM ] = {
'OpenAI[davinci-003]' : OpenAI ( model_name = 'text-davinci-003' ),
'OpenAI[davinci-002]' : OpenAI ( model_name = 'text-davinci-002' ),
'OpenAI[ada-001]' : OpenAI ( model_name = 'text-ada-001' )
}
evaluator = Evaluator ( models )
results = evaluator . evaluate ( prompt , labels )
for result in results :
print ( f'Model { result . model_name } accuracy: { result . accuracy * 100 } %' )Sorties
Model OpenAI[davinci-003] accuracy: 100.0%
Model OpenAI[davinci-002] accuracy: 33.3%
Model OpenAI[ada-001] accuracy: 0.0%
Installer la poésie
poetry install
export OPENAI_API_KEY="your key"
Ligne de commande, en utilisant des données à partir de fichiers CSV:
poetry run python3 -m brewval.cli -p examples/weather-umbrella/prompts.csv -l examples/weather-umbrella/labels.csv
Cahier Jupyter (docs / exemples / evaluation.ipynb):
poetry run jupyter notebook