Un documento simple y un motor de búsqueda de imágenes implementado en Keras
Goto keras_search_engine_web directorio y ejecute el siguiente comando:
python flaskr.pyAhora navegue por su navegador a http: // localhost: 5000 y puede probar
Con el servidor API web en ejecución, puede indexar un nuevo documento llamando a la siguiente API web:
http://localhost:5000/index_textPor ejemplo, el siguiente es el comando CURL para llamar a la API web para indexar algunos documentos:
curl -H ' Content-Type application/json ' -X POST -d ' {"doc":"Whether you think that you can, or that you can ' t, you are usually right. " }' http://localhost:5000/index_text
curl -H 'Content-Type application/json' -X POST -d '{ " doc " : " Try to learn something about everything and everything about something. " }' http://localhost:5000/index_text
curl -H 'Content-Type application/json' -X POST -d '{ " doc " : " You can avoid reality, but you cannot avoid the consequences of avoiding reality. " }' http://localhost:5000/index_text
curl -H 'Content-Type application/json' -X POST -d '{ " doc " : " A mathematician is a device for turning coffee into theorems. " }' http://localhost:5000/index_text
curl -H 'Content-Type application/json' -X POST -d '{ " doc " : " In theory, there is no difference between theory and practice. But in practice, there is. " }' http://localhost:5000/index_text
curl -H 'Content-Type application/json' -X POST -d '{ " doc " : " I find that the harder I work, the more luck I seem to have. " }' http://localhost:5000/index_textPara consultar con la API web, puede llamar a la siguiente API web:
curl -H ' Content-Type application/json ' -X POST -d ' {"query":"mathematician and coffee", "limit": 3, "model": "glove"} ' http://localhost:5000/search_textCon el servidor API web en ejecución, puede indexar una nueva imagen llamando a la siguiente API web a través de la solicitud de publicación:
http://localhost:5000/index_imagePuede consultar imágenes similares llamando a la siguiente solicitud de publicación de la API web:
http://localhost:5000/search_image/10donde 10 es el límite en el número de imágenes devueltas
También hay una clase SearchEngineClient en el keras_search_engine_client, los códigos de muestra se parecen:
from keras_search_engine_client . search_engine_client import SearchEngineClient
client = SearchEngineClient ()
# text indexing and search
doc_count = client . doc_count ()
if doc_count < 4 :
client . index_text ( 'Whether you think that you can, or that you can.' )
client . index_text ( 'Try to learn something about everything and everything about something.' )
client . index_text ( 'You can avoid reality, but you cannot avoid the consequences of avoiding reality.' )
client . index_text ( 'A mathematician is a device for turning coffee into theorems.' )
client . index_text ( 'In theory, there is no difference between theory and practice. But in practice, there is.' )
client . index_text ( 'I find that the harder I work, the more luck I seem to have.' )
client . search_text ( query = 'mathematician and coffee' , limit = 3 , model = 'glove' )
client . search_text ( query = 'mathematician and coffee' , limit = 3 , model = 'doc-encoder' )
# image indexing and search
client . index_image ( './images/Pokemon7.png' )
client . search_image ( './images/Pokemon1.jpg' , 6 )