LLMKE
1.0.0
The implementation of the winning system for Track 2 of the ISWC LM-KBC 2023 Challenge.
.
├── context
│ └── imdb.series.index.json
├── data
│ ├── dev.pred.jsonl
│ ├── test.jsonl
│ ├── test.query.jsonl # Query date: 28/07/2023
│ ├── train.jsonl
│ └── val.jsonl
├── evaluations # Disambiguated
│ └── */*.txt
├── predictions # Disambiguated
│ └── */*.jsonl
├── pipeline
│ ├── __init__.py
│ ├── config.py
│ ├── disambiguate.py
│ ├── evaluate.py
│ ├── context.py
│ ├── file_io.py
│ ├── models.py
│ ├── prompt.py
│ └── run.py
├── examples.jsonl
├── main.py
├── predictions.jsonl
├── predictions.zip
├── question-prompts.json
├── README.md
├── requirements.txt
└── sparql_query.py
For detailed results, please refer to the spreadsheet here.
You need an OpenAI API key to run this pipeline. You can paste your API key into pipeline.config.py.
cd LLMKESet up requirements:
pip install -r requirements.txtpython main.py -t run -d <dataset> -m <model> -s <setting> -p <prompt> -r <relation><dataset>: train, val, test<model>: gpt-3.5-turbo, gpt-4<setting>: zero-shot, few-shot, context<prompt>: question, triplepython main.py -t run -d test -m gpt-4 -s few-shot -p question -r CompoundHasPartsFor using IMDb context, run download_imdb_dataset() and build_imdb_id_index() in pipeline.context first.
We provide an index for the test set.
python main.py -t disambiguate -d <dataset> -m <model> -s <setting> -p <prompt> -r <relation>python main.py -t disambiguate -d test -m gpt-4 -s context -p question -r StateBordersStatepython main.py -t evaluate -d <dataset> -m <model> -s <setting> -p <prompt> -c -w -r <relation>python main.py -t evaluate -d <dataset> -m <model> -s <setting> -p <prompt> -w -r all@article{zhang-et-al-2023-llmke,
author = {Bohui Zhang and
Ioannis Reklos and
Nitisha Jain and
Albert Mero{~{n}}o{-}Pe{~{n}}uela and
Elena Simperl},
title = {{Using Large Language Models for Knowledge Engineering (LLMKE): A Case Study on Wikidata}},
journal = {CoRR},
volume = {abs/2309.08491},
year = {2023},
url = {https://doi.org/10.48550/arXiv.2309.08491},
doi = {10.48550/arXiv.2309.08491},
eprinttype = {arXiv},
eprint = {2309.08491},
timestamp = {Fri, 22 Sep 2023 12:57:22 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2309-08491.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}