Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows training and prediction using pretrained models.
from klaam import SpeechClassification
model = SpeechClassification()
model.classify(wav_file)from klaam import SpeechRecognition
model = SpeechRecognition()
model.transcribe(wav_file)from klaam import TextToSpeech
prepare_tts_model_path = "../cfgs/FastSpeech2/config/Arabic/preprocess.yaml"
model_config_path = "../cfgs/FastSpeech2/config/Arabic/model.yaml"
train_config_path = "../cfgs/FastSpeech2/config/Arabic/train.yaml"
vocoder_config_path = "../cfgs/FastSpeech2/model_config/hifigan/config.json"
speaker_pre_trained_path = "../data/model_weights/hifigan/generator_universal.pth.tar"
model = TextToSpeech(prepare_tts_model_path, model_config_path, train_config_path, vocoder_config_path, speaker_pre_trained_path)
model.synthesize(sample_text)There are two avilable models for recognition trageting Modern Standard Arabic (MSA) and Egyptian dialect (EGY) . You can set any of them using the lang attribute.
from klaam import SpeechRecognition
model = SpeechRecognition(lang = 'msa')
model.transcribe('file.wav')| Dataset | Description | Link |
|---|---|---|
| MGB-3 | Egyptian Arabic Speech recognition in the wild. Every sentence was annotated by four annotators. More than 15 hours have been collected from YouTube. | here [Registeration required] |
| ADI-5 | More than 50 hours collected from Aljazeera TV. 4 regional dialectal: Egyptian (EGY), Levantine (LAV), Gulf (GLF), North African (NOR), and Modern Standard Arabic (MSA). This dataset is a part of the MGB-3 challenge. | here [Registeration required] |
| Common voice | Multlilingual dataset avilable on huggingface | here. |
| Arabic Speech Corpus | Arabic dataset with alignment and transcriptions | here. |
Our project currently supports four models, three of them are avilable on transformers.
| Language | Description | Source |
|---|---|---|
| Egyptian | Speech recognition | wav2vec2-large-xlsr-53-arabic-egyptian |
| Standard Arabic | Speech recognition | wav2vec2-large-xlsr-53-arabic |
| EGY, NOR, LAV, GLF, MSA | Speech classification | wav2vec2-large-xlsr-dialect-classification |
| Standard Arabic | Text-to-Speech | fastspeech2 |
| Name | Description | Notebook |
|---|---|---|
| Demo | Classification, Recongition and Text-to-speech in a few lines of code. | |
| Demo with mic | Audio Recongition and classification with recording. |
The scripts are a modification of jqueguiner/wav2vec2-sprint.
This script is used for the classification task on the 5 classes.
python run_classifier.py
--model_name_or_path="facebook/wav2vec2-large-xlsr-53"
--output_dir=/path/to/output
--cache_dir=/path/to/cache/
--freeze_feature_extractor
--num_train_epochs="50"
--per_device_train_batch_size="32"
--preprocessing_num_workers="1"
--learning_rate="3e-5"
--warmup_steps="20"
--evaluation_strategy="steps"
--save_steps="100"
--eval_steps="100"
--save_total_limit="1"
--logging_steps="100"
--do_eval
--do_train This script is for training on the dataset for pretraining on the egyption dialects dataset.
python run_mgb3.py
--model_name_or_path="facebook/wav2vec2-large-xlsr-53"
--output_dir=/path/to/output
--cache_dir=/path/to/cache/
--freeze_feature_extractor
--num_train_epochs="50"
--per_device_train_batch_size="32"
--preprocessing_num_workers="1"
--learning_rate="3e-5"
--warmup_steps="20"
--evaluation_strategy="steps"
--save_steps="100"
--eval_steps="100"
--save_total_limit="1"
--logging_steps="100"
--do_eval
--do_train This script can be used for Arabic common voice training
python run_common_voice.py
--model_name_or_path="facebook/wav2vec2-large-xlsr-53"
--dataset_config_name="ar"
--output_dir=/path/to/output/
--cache_dir=/path/to/cache
--overwrite_output_dir
--num_train_epochs="1"
--per_device_train_batch_size="32"
--per_device_eval_batch_size="32"
--evaluation_strategy="steps"
--learning_rate="3e-4"
--warmup_steps="500"
--fp16
--freeze_feature_extractor
--save_steps="10"
--eval_steps="10"
--save_total_limit="1"
--logging_steps="10"
--group_by_length
--feat_proj_dropout="0.0"
--layerdrop="0.1"
--gradient_checkpointing
--do_train --do_eval
--max_train_samples 100 --max_val_samples 100We use the pytorch implementation of fastspeech2 by ming024.
The procedure is as the following:
wget http://en.arabicspeechcorpus.com/arabic-speech-corpus.zip
unzip arabic-speech-corpus.zip
mkdir -p raw_data/Arabic/Arabic preprocessed_data/Arabic/TextGrid/Arabic
cp arabic-speech-corpus/textgrid/* preprocessed_data/Arabic/TextGrid/Arabic
import os
base_dir = '/content/arabic-speech-corpus'
lines = []
for lab_file in os.listdir(f'{base_dir}/lab'):
lines.append(lab_file[:-4]+'|'+open(f'{base_dir}/lab/{lab_file}', 'r').read())
open(f'{base_dir}/metadata.csv', 'w').write(('n').join(lines))git clone --depth 1 https://github.com/zaidalyafeai/FastSpeech2
cd FastSpeech2
pip install -r requirements.txtpython3 prepare_align.py config/Arabic/preprocess.yaml
python3 preprocess.py config/Arabic/preprocess.yaml
unzip hifigan/generator_LJSpeech.pth.tar.zip -d hifigan
unzip hifigan/generator_universal.pth.tar.zip -d hifigan
python3 train.py -p config/Arabic/preprocess.yaml -m config/Arabic/model.yaml -t config/Arabic/train.yaml
This repository was created by the ARBML team. If you have any suggestion or contribution feel free to make a pull request.