Torch-TensorRT brings the power of TensorRT to PyTorch. Accelerate inference latency by up to 5x compared to eager execution in just one line of code.
Stable versions of Torch-TensorRT are published on PyPI
pip install torch-tensorrtNightly versions of Torch-TensorRT are published on the PyTorch package index
pip install --pre torch-tensorrt --index-url https://download.pytorch.org/whl/nightly/cu124Torch-TensorRT is also distributed in the ready-to-run NVIDIA NGC PyTorch Container which has all dependencies with the proper versions and example notebooks included.
For more advanced installation methods, please see here
You can use Torch-TensorRT anywhere you use torch.compile:
import torch
import torch_tensorrt
model = MyModel().eval().cuda() # define your model here
x = torch.randn((1, 3, 224, 224)).cuda() # define what the inputs to the model will look like
optimized_model = torch.compile(model, backend="tensorrt")
optimized_model(x) # compiled on first run
optimized_model(x) # this will be fast!If you want to optimize your model ahead-of-time and/or deploy in a C++ environment, Torch-TensorRT provides an export-style workflow that serializes an optimized module. This module can be deployed in PyTorch or with libtorch (i.e. without a Python dependency).
import torch
import torch_tensorrt
model = MyModel().eval().cuda() # define your model here
inputs = [torch.randn((1, 3, 224, 224)).cuda()] # define a list of representative inputs here
trt_gm = torch_tensorrt.compile(model, ir="dynamo", inputs=inputs)
torch_tensorrt.save(trt_gm, "trt.ep", inputs=inputs) # PyTorch only supports Python runtime for an ExportedProgram. For C++ deployment, use a TorchScript file
torch_tensorrt.save(trt_gm, "trt.ts", output_format="torchscript", inputs=inputs)import torch
import torch_tensorrt
inputs = [torch.randn((1, 3, 224, 224)).cuda()] # your inputs go here
# You can run this in a new python session!
model = torch.export.load("trt.ep").module()
# model = torch_tensorrt.load("trt.ep").module() # this also works
model(*inputs)#include "torch/script.h"
#include "torch_tensorrt/torch_tensorrt.h"
auto trt_mod = torch::jit::load("trt.ts");
auto input_tensor = [...]; // fill this with your inputs
auto results = trt_mod.forward({input_tensor});| Platform | Support |
|---|---|
| Linux AMD64 / GPU | Supported |
| Windows / GPU | Supported (Dynamo only) |
| Linux aarch64 / GPU | Native Compilation Supported on JetPack-4.4+ (use v1.0.0 for the time being) |
| Linux aarch64 / DLA | Native Compilation Supported on JetPack-4.4+ (use v1.0.0 for the time being) |
| Linux ppc64le / GPU | Not supported |
Note: Refer NVIDIA L4T PyTorch NGC container for PyTorch libraries on JetPack.
These are the following dependencies used to verify the testcases. Torch-TensorRT can work with other versions, but the tests are not guaranteed to pass.
Deprecation is used to inform developers that some APIs and tools are no longer recommended for use. Beginning with version 2.3, Torch-TensorRT has the following deprecation policy:
Deprecation notices are communicated in the Release Notes. Deprecated API functions will have a statement in the source documenting when they were deprecated. Deprecated methods and classes will issue deprecation warnings at runtime, if they are used. Torch-TensorRT provides a 6-month migration period after the deprecation. APIs and tools continue to work during the migration period. After the migration period ends, APIs and tools are removed in a manner consistent with semantic versioning.
Take a look at the CONTRIBUTING.md
The Torch-TensorRT license can be found in the LICENSE file. It is licensed with a BSD Style licence