DBNet.pytorch
1.0.0
note: some code is inherited from MhLiao/DB
中文解读

2020-06-07: 添加灰度图训练,训练灰度图时需要在配置里移除dataset.args.transforms.Normalize
conda env create -f environment.yml
git clone https://github.com/WenmuZhou/DBNet.pytorch.git
cd DBNet.pytorch/
or
conda create -n dbnet python=3.6
conda activate dbnet
conda install ipython pip
# python dependencies
pip install -r requirement.txt
# install PyTorch with cuda-10.1
# Note that you can change the cudatoolkit version to the version you want.
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
# clone repo
git clone https://github.com/WenmuZhou/DBNet.pytorch.git
cd DBNet.pytorch/
TBD
Training data: prepare a text train.txt in the following format, use 't' as a separator
./datasets/train/img/001.jpg ./datasets/train/gt/001.txt
Validation data: prepare a text test.txt in the following format, use 't' as a separator
./datasets/test/img/001.jpg ./datasets/test/gt/001.txt
img foldergt folderThe groundtruth can be .txt files, with the following format:
x1, y1, x2, y2, x3, y3, x4, y4, annotation
dataset['train']['dataset'['data_path']',dataset['validate']['dataset'['data_path']in config/icdar2015_resnet18_fpn_DBhead_polyLR.yamlbash singlel_gpu_train.shbash multi_gpu_train.sheval.py is used to test model on test dataset
model_path in eval.shbash eval.shpredict.py Can be used to inference on all images in a folder
model_path,input_folder,output_folder in predict.shbash predict.sh
You can change the model_path in the predict.sh file to your model location.
tips: if result is not good, you can change thre in predict.sh
The project is still under development.
only train on ICDAR2015 dataset
| Method | image size (short size) | learning rate | Precision (%) | Recall (%) | F-measure (%) | FPS |
|---|---|---|---|---|---|---|
| SynthText-Defrom-ResNet-18(paper) | 736 | 0.007 | 86.8 | 78.4 | 82.3 | 48 |
| ImageNet-resnet18-FPN-DBHead | 736 | 1e-3 | 87.03 | 75.06 | 80.6 | 43 |
| ImageNet-Defrom-Resnet18-FPN-DBHead | 736 | 1e-3 | 88.61 | 73.84 | 80.56 | 36 |
| ImageNet-resnet50-FPN-DBHead | 736 | 1e-3 | 88.06 | 77.14 | 82.24 | 27 |
| ImageNet-resnest50-FPN-DBHead | 736 | 1e-3 | 88.18 | 76.27 | 81.78 | 27 |
TBD
If this repository helps you,please star it. Thanks.