PyTorch tutorials, examples and books

Table of Contents / Contents:
- PyTorch tutorials, examples and books
- Table of Contents / Contents:
- PyTorch 1.x tutorials and examples
- Books and slides about PyTorch books, PPTs, etc.
- Here are some independent tutorials
- 1) PyTorch deep learning: 60 minutes of introduction and practical combat
- 2) Learning PyTorch with Examples Learning PyTorch
- How to run? Recommended running method
PyTorch 1.x tutorials and examples
- 0.PyTorch version changes and migration guide
- 1.PyTorch_for_Numpy_Users PyTorch Guide for Numpy Users
- 2.PyTorch_Basics PyTorch Basics
- 3.Linear_Regression Linear Regression
- 4.Logistic_Regression Logistic Regression
- 5.Optimizer Optimizer
- 6.Neural_Network Neural Network
- 7.Convolutional_Neural_Network(CNN) Convolutional Neural Network
- 8.Famous_CNN Classic CNN Network
- 9.Using_Pretrained_models Using pre-trained models
- 10.Dataset_and_Dataloader Custom data reading
- 11.Custom_Dataset_example Define your own dataset
- 12.Visdom_Visualization visdom visualization
- 13.Tensorboard_Visualization tensorboard visualization
- 14. Semantic_Segmentation Semantic segmentation
- 15.Transfer_Learning Transfer Learning
- 16.Neural_Style(StyleTransfer) Style Transfer
- A. Computer Vision and PyTorch
- A brief summary of PyTorch and computer vision
- Markdown version
- Notebook version
- B.PyTorch Overview
Books and slides about PyTorch books, PPTs, etc.
Note: some of these are old version; The following book part is not version 1.x.
There may be delays in updating this directory. Please refer to the files in this folder for all information.
- Automatic differentiation in PyTorch.pdf
- A brief summary of the PTDC '18 PyTorch 1.0 Preview and Promise - Hacker Noon.pdf
- Deep Architectures.pdf
- Deep Architectures.pptx
- Deep Learning Toolkits II pytorch example.pdf
- Deep Learning with PyTorch - Vishnu Subramanian.pdf
- Deep-Learning-with-PyTorch.pdf
- Deep_Learning_with_PyTorch_Quick_Start_Guide.pdf
- First steps towards deep learning with pytorch.pdf
- Introduction to Tensorflow, PyTorch and Caffe.pdf
- pytorch 0.4 - tutorial - directory version.pdf
- PyTorch 0.4 Chinese Documentation - Translation.pdf
- PyTorch 1.0 Bringing research and production together Presentation.pdf
- PyTorch Recipes - A Problem-Solution Approach - Pradeepta Mishra.pdf
- PyTorch under the hood A guide to understand PyTorch internals.pdf
- pytorch-internals.pdf
- PyTorch_tutorial_0.0.4_Yu Tingsong.pdf
- PyTorch_tutorial_0.0.5_Yu Tingsong.pdf
- pytorch convolution, deconvolution - download from internet.pdf
- PyTorch deep learning practice-Hou Yijun.epub
- PyTorch deep learning practice-Hou Yijun.pdf
- Deep Learning Pytorch - Liao Xingyu.pdf
- Deep Learning PyTorch Practical Computer Vision-Tang Jinmin.pdf
- PyTorch for Beginners in Deep Learning - Liao Xingyu (with catalog).pdf
- Deep Learning Framework PyTorch: Getting Started and Practice - Chen Yun.pdf
- Udacity: Deep Learning with PyTorch
Expand to view
* Part 1: Introduction to PyTorch and using tensors
* Part 2: Building fully-connected neural networks with PyTorch
* Part 3: How to train a fully-connected network with backpropagation on MNIST
* Part 4: Exercise - train a neural network on Fashion-MNIST
* Part 5: Using a trained network for making predictions and validating networks
* Part 6: How to save and load trained models
* Part 7: Load image data with torchvision, also data augmentation
* Part 8: Use transfer learning to train a state-of-the-art image classifier for dogs and cats
- PyTorch-Zero-To-All: Slides-newest from Google Drive
Expand to view
*Lecture 01_ Overview.pptx
*Lecture 02_ Linear Model.pptx
*Lecture 03_ Gradient Descent.pptx
*Lecture 04_ Back-propagation and PyTorch autograd.pptx
*Lecture 05_ Linear regression in PyTorch way.pptx
*Lecture 06_ Logistic Regression.pptx
*Lecture 07_ Wide _ Deep.pptx
*Lecture 08_DataLoader.pptx
*Lecture 09_ Softmax Classifier.pptx
*Lecture 10_ Basic CNN.pptx
*Lecture 11_ Advanced CNN.pptx
*Lecture 12_ RNN.pptx
*Lecture 13_ RNN II.pptx
*Lecture 14_ Seq2Seq.pptx
*Lecture 15_ NSML, Smartest ML Platform.pptx
- Deep Learning Course Slides and Handout - fleuret.org
Expand to view
* 1-1-from-anns-to-deep-learning.pdf
* 1-2-current-success.pdf
* 1-3-what-is-happening.pdf
* 1-4-tensors-and-linear-regression.pdf
* 1-5-high-dimensional-tensors.pdf
* 1-6-tensor-internals.pdf
* 2-1-loss-and-risk.pdf
* 2-2-overfitting.pdf
* 2-3-bias-variance-dilemma.pdf
* 2-4-evaluation-protocols.pdf
* 2-5-basic-embeddings.pdf
* 3-1-perceptron.pdf
* 3-2-LDA.pdf
* 3-3-features.pdf
* 3-4-MLP.pdf
* 3-5-gradient-descent.pdf
* 3-6-backprop.pdf
* 4-1-DAG-networks.pdf
* 4-2-autograd.pdf
* 4-3-modules-and-batch-processing.pdf
* 4-4-convolutions.pdf
* 4-5-pooling.pdf
* 4-6-writing-a-module.pdf
* 5-1-cross-entropy-loss.pdf
* 5-2-SGD.pdf
* 5-3-optim.pdf
* 5-4-l2-l1-penalties.pdf
* 5-5-initialization.pdf
* 5-6-architecture-and-training.pdf
* 5-7-writing-an-autograd-function.pdf
* 6-1-benefits-of-depth.pdf
* 6-2-rectifiers.pdf
* 6-3-dropout.pdf
* 6-4-batch-normalization.pdf
* 6-5-residual-networks.pdf
* 6-6-using-GPUs.pdf
* 7-1-CV-tasks.pdf
* 7-2-image-classification.pdf
* 7-3-object-detection.pdf
* 7-4-segmentation.pdf
* 7-5-dataloader-and-surgery.pdf
* 8-1-looking-at-parameters.pdf
* 8-2-looking-at-activations.pdf
* 8-3-visualizing-in-input.pdf
* 8-4-optimizing-inputs.pdf
* 9-1-transposed-convolutions.pdf
* 9-2-autoencoders.pdf
* 9-3-denoising-and-variational-autoencoders.pdf
* 9-4-NVP.pdf
* 10-1-GAN.pdf
* 10-2-Wasserstein-GAN.pdf
* 10-3-conditional-GAN.pdf
* 10-4-persistence.pdf
* 11-1-RNN-basics.pdf
* 11-2-LSTM-and-GRU.pdf
* 11-3-word-embeddings-and-translation.pdf
Here are some independent tutorials
1) PyTorch deep learning: 60 minutes of introduction and practical combat
Expand to view
-
What is PyTorch? (What is PyTorch?)
- getting Started
- NumPy Bridge
- Convert torch's Tensor to NumPy array
- Convert NumPy array to Torch tensor
- Tensors on CUDA
-
Autograd: Automatically search for guidance
-
Neural Networks
- Define the network
- Loss function
- Backpropagation
- Update weights
-
Training a Classifier
- Where is the data?
- Training a picture classifier
- 1. Load and standardize CIFAR10
- 2. Define convolutional neural network
- 3. Define loss functions and optimizers
- 4. Training the network
- 5. Use test data to test the network
- Training on GPU
- Training on multiple GPUs
- What to do next?
-
Optional: Data Parallelism
- Import and Parameters
- Virtual dataset
- Simple model
- Create a model and data in parallel
- Run the model
- result
- Summarize
2) Learning PyTorch with Examples Learning PyTorch
Expand to view
How to run? Recommended running method
Some code in this repo is separated in blocks using #%% . A block is as same as a cell in Jupyter Notebook . So editors/IDEs supporting this functionality is recommended.
Such as:
- VSCode with Microsoft Python extension
- Spyder with Anaconda
- PyCharm