gpn
0.6

Code and resources from GPN paper and GPN-MSA paper.
pip install git+https://github.com/songlab-cal/gpn.gitimport gpn.model
from transformers import AutoModelForMaskedLM
model = AutoModelForMaskedLM.from_pretrained("songlab/gpn-brassicales")
# or
model = AutoModelForMaskedLM.from_pretrained("songlab/gpn-msa-sapiens")Can also be called GPN-SS (single sequence).
examples/ss/basic_example.ipynb convnet (default), roformer (Transformer), bytenet--config_overrides encoder=bytenet,num_hidden_layers=30WANDB_PROJECT=your_project torchrun --nproc_per_node=$(echo $CUDA_VISIBLE_DEVICES | awk -F',' '{print NF}') -m gpn.ss.run_mlm --do_train --do_eval
--report_to wandb --prediction_loss_only True --remove_unused_columns False
--dataset_name results/dataset --tokenizer_name gonzalobenegas/tokenizer-dna-mlm
--soft_masked_loss_weight_train 0.1 --soft_masked_loss_weight_evaluation 0.0
--weight_decay 0.01 --optim adamw_torch
--dataloader_num_workers 16 --seed 42
--save_strategy steps --save_steps 10000 --evaluation_strategy steps
--eval_steps 10000 --logging_steps 10000 --max_steps 120000 --warmup_steps 1000
--learning_rate 1e-3 --lr_scheduler_type constant_with_warmup
--run_name your_run --output_dir your_output_dir --model_type GPN
--per_device_train_batch_size 512 --per_device_eval_batch_size 512 --gradient_accumulation_steps 1 --total_batch_size 2048
--torch_compile
--ddp_find_unused_parameters False
--bf16 --bf16_full_eval chrom, start, endtorchrun --nproc_per_node=$(echo $CUDA_VISIBLE_DEVICES | awk -F',' '{print NF}') -m gpn.ss.get_embeddings windows.parquet genome.fa.gz 100 your_output_dir
results.parquet --per_device_batch_size 4000 --is_file --dataloader_num_workers 16chrom, pos, ref, alttorchrun --nproc_per_node=$(echo $CUDA_VISIBLE_DEVICES | awk -F',' '{print NF}') -m gpn.ss.run_vep variants.parquet genome.fa.gz 512 your_output_dir results.parquet
--per_device_batch-size 4000 --is_file --dataloader_num_workers 16examples/msa/basic_example.ipynbexamples/msa/vep.ipynbexamples/msa/training.ipynbGPN:
@article{benegas2023dna,
author = {Gonzalo Benegas and Sanjit Singh Batra and Yun S. Song },
title = {DNA language models are powerful predictors of genome-wide variant effects},
journal = {Proceedings of the National Academy of Sciences},
volume = {120},
number = {44},
pages = {e2311219120},
year = {2023},
doi = {10.1073/pnas.2311219120},
URL = {https://www.pnas.org/doi/abs/10.1073/pnas.2311219120},
eprint = {https://www.pnas.org/doi/pdf/10.1073/pnas.2311219120},
}GPN-MSA:
@article{benegas2023gpnmsa,
author = {Gonzalo Benegas and Carlos Albors and Alan J. Aw and Chengzhong Ye and Yun S. Song},
title = {GPN-MSA: an alignment-based DNA language model for genome-wide variant effect prediction},
elocation-id = {2023.10.10.561776},
year = {2023},
doi = {10.1101/2023.10.10.561776},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2023/10/11/2023.10.10.561776},
eprint = {https://www.biorxiv.org/content/early/2023/10/11/2023.10.10.561776.full.pdf},
journal = {bioRxiv}
}