This project is based on vue (front-end) and fastapi (back-end). It embeds vector database text by calling the bce-embedding model, and combines it with the propt to call the qwen-long long dialogue model of the previous text of the Tongyi text to realize Q&A in specific fields. At the same time, vue introduced the vuetify component to visually display the analysis results of https://www.hackthebox.com website
Suitable for ubuntu linux (also suitable for running locally in windows)
mkdir -p ~ /miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~ /miniconda3/miniconda.sh
bash ~ /miniconda3/miniconda.sh -b -u -p ~ /miniconda3
rm -rf ~ /miniconda3/miniconda.sh
~ /miniconda3/bin/conda init bash
~ /miniconda3/bin/conda init zshsudo apt-get update
sudo apt-get install nodejs And configure api_key in main.py , see: https://help.aliyun.com/zh/dashscope/developer-reference/acquisition-and-configuration-of-api-key?spm=a2c4g.11186623.0.0.42124937yljUMp
main.py model_name = r"/root/huggingface_cache/bce-embedding-base_v1"
model_kwargs = { 'device' : 'cpu' }
encode_kwargs = { 'normalize_embeddings' : False }
hfembedding = HuggingFaceEmbeddings (
model_name = model_name ,
model_kwargs = model_kwargs ,
encode_kwargs = encode_kwargs
)Change model_name to the path you downloaded and put
SWS3023 Web Mining Group1
Welcome pull request