EvalPlus() =>
?About • Quick Start • LLM Backends • Documents • Citation • Acknowledgement
Who's using EvalPlus datasets? EvalPlus has been used by various LLM teams, including:
Below tracks the notable updates of EvalPlus:
v0.3.1]: EvalPlus v0.3.1 is officially released! Highlights: (i) Code efficiency evaluation via EvalPerf, (ii) one command to run all: generation + post-processing + evaluation, (iii) support for more inference backends such as Google Gemini & Anthropic, etc.v0.3.0]: Improved ground-truth solutions for MBPP+ tasks (IDs: 459, 102, 559). Thanks to EvalArena.v0.3.0]: MBPP+ is upgraded to v0.2.0 by removing some broken tasks (399 -> 378 tasks). ~4pp pass@1 improvement could be expected.v0.2.1) You can use EvalPlus datasets via bigcode-evaluation-harness! HumanEval+ oracle fixes (32).v0.2.0) MBPP+ is released! HumanEval contract & input fixes (0/3/9/148/114/1/2/99/28/32/35/160).v0.1.7) Leaderboard release; HumanEval+ contract and input fixes (32/166/126/6)v0.1.6) Configurable and by-default-conservative timeout settings; HumanEval+ contract & ground-truth fixes (129/148/75/53/0/3/9/140)v0.1.5) HumanEval+ mini is released for ultra-fast evaluation when you have too many samples!v0.1.1) Optimizing user experiences: evaluation speed, PyPI package, Docker, etc.v0.1.0) HumanEval+ is released!EvalPlus is a rigorous evaluation framework for LLM4Code, with:
Why EvalPlus?
Want to know more details? Read our papers & materials!
pip install --upgrade "evalplus[vllm] @ git+https://github.com/evalplus/evalplus"
# Or `pip install "evalplus[vllm]" --upgrade` for the latest stable release
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B"
--dataset [humaneval|mbpp]
--backend vllm
--greedy# Local generation
evalplus.codegen --model "ise-uiuc/Magicoder-S-DS-6.7B"
--dataset humaneval
--backend vllm
--greedy
# Code execution within Docker
docker run --rm --pull=always -v $(pwd)/evalplus_results:/app ganler/evalplus:latest
evalplus.evaluate --dataset humaneval
--samples /app/humaneval/ise-uiuc--Magicoder-S-DS-6.7B_vllm_temp_0.0.jsonlpip install --upgrade "evalplus[perf,vllm] @ git+https://github.com/evalplus/evalplus"
# Or `pip install "evalplus[perf,vllm]" --upgrade` for the latest stable release
sudo sh -c 'echo 0 > /proc/sys/kernel/perf_event_paranoid' # Enable perf
evalplus.evalperf --model "ise-uiuc/Magicoder-S-DS-6.7B" --backend vllm# Local generation
evalplus.codegen --model "ise-uiuc/Magicoder-S-DS-6.7B"
--dataset evalperf
--backend vllm
--temperature 1.0
--n-samples 100
# Code execution within Docker
sudo sh -c 'echo 0 > /proc/sys/kernel/perf_event_paranoid' # Enable perf
docker run --cap-add PERFMON --rm --pull=always -v $(pwd)/evalplus_results:/app ganler/evalplus:latest
evalplus.evalperf --samples /app/evalperf/ise-uiuc--Magicoder-S-DS-6.7B_vllm_temp_1.0.jsonltransformers backend:evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B"
--dataset [humaneval|mbpp]
--backend hf
--greedyNote
EvalPlus uses different prompts for base and chat models.
By default it is detected by tokenizer.chat_template when using hf/vllm as backend.
For other backends, only chat mode is allowed.
Therefore, if your base models come with a tokenizer.chat_template,
please add --force-base-prompt to avoid being evaluated
in a chat mode.
# Install Flash Attention 2
pip install packaging ninja
pip install flash-attn --no-build-isolation
# Note: if you have installation problem, consider using pre-built
# wheels from https://github.com/Dao-AILab/flash-attention/releases
# Run evaluation with FA2
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B"
--dataset [humaneval|mbpp]
--backend hf
--attn-implementation [flash_attention_2|sdpa]
--greedyvllm backend:evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B"
--dataset [humaneval|mbpp]
--backend vllm
--tp [TENSOR_PARALLEL_SIZE]
--greedyopenai compatible servers (e.g., vLLM):# OpenAI models
export OPENAI_API_KEY="{KEY}" # https://platform.openai.com/settings/organization/api-keys
evalplus.evaluate --model "gpt-4o-2024-08-06"
--dataset [humaneval|mbpp]
--backend openai --greedy
# DeepSeek
export OPENAI_API_KEY="{KEY}" # https://platform.deepseek.com/api_keys
evalplus.evaluate --model "deepseek-chat"
--dataset [humaneval|mbpp]
--base-url https://api.deepseek.com
--backend openai --greedy
# Grok
export OPENAI_API_KEY="{KEY}" # https://console.x.ai/
evalplus.evaluate --model "grok-beta"
--dataset [humaneval|mbpp]
--base-url https://api.x.ai/v1
--backend openai --greedy
# vLLM server
# First, launch a vLLM server: https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B"
--dataset [humaneval|mbpp]
--base-url http://localhost:8000/v1
--backend openai --greedyexport OPENAI_API_KEY="[YOUR_API_KEY]"
evalplus.evaluate --model "gpt-4o"
--dataset [humaneval|mbpp]
--backend openai
--greedyexport ANTHROPIC_API_KEY="[YOUR_API_KEY]"
evalplus.evaluate --model "claude-3-haiku-20240307"
--dataset [humaneval|mbpp]
--backend anthropic
--greedyexport GOOGLE_API_KEY="[YOUR_API_KEY]"
evalplus.evaluate --model "gemini-1.5-pro"
--dataset [humaneval|mbpp]
--backend google
--greedyexport BEDROCK_ROLE_ARN="[BEDROCK_ROLE_ARN]"
evalplus.evaluate --model "anthropic.claude-3-5-sonnet-20241022-v2:0"
--dataset [humaneval|mbpp]
--backend bedrock
--greedyYou can checkout the generation and results at evalplus_results/[humaneval|mbpp]/
git clone https://github.com/evalplus/evalplus.git
cd evalplus
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txtTo learn more about how to use EvalPlus, please refer to:
@inproceedings{evalplus,
title = {Is Your Code Generated by Chat{GPT} Really Correct? Rigorous Evaluation of Large Language Models for Code Generation},
author = {Liu, Jiawei and Xia, Chunqiu Steven and Wang, Yuyao and Zhang, Lingming},
booktitle = {Thirty-seventh Conference on Neural Information Processing Systems},
year = {2023},
url = {https://openreview.net/forum?id=1qvx610Cu7},
}
@inproceedings{evalperf,
title = {Evaluating Language Models for Efficient Code Generation},
author = {Liu, Jiawei and Xie, Songrun and Wang, Junhao and Wei, Yuxiang and Ding, Yifeng and Zhang, Lingming},
booktitle = {First Conference on Language Modeling},
year = {2024},
url = {https://openreview.net/forum?id=IBCBMeAhmC},
}