NExT-GPT: Any-to-Any Multimodal LLMShengqiong Wu, Hao Fei*, Leigang Qu, Wei Ji, and Tat-Seng Chua. (*Correspondence )
ICML 2024, Oral Paper
NExT++ Research Center, School of Computing, National University of Singapore
This repository hosts the code, data and model weight of NExT-GPT, the first end-to-end MM-LLM that perceives input and generates output in arbitrary combinations (any-to-any) of text, image, video, and audio and beyond.
Noted: we wrap the former old codebase into the NExT-GPT-Lagacy. Please refer to this new codebase for all training and tuning procedures.
7b_tiva_v0.Here we showcase examples generated from NExT-GPT. For more examples, kindly visit the webpage, or the online live demo.
NExt-GPT is built on top of existing pre-trained LLM, multimodal encoder and SoTA diffusion models, with sufficient end-to-end instruction tuning.
For more technical details, kindly refer to the paper.
.
|-- NExT-GPT-Lagacy # the previous version of the model
|-- assets
|-- checkpoints # save the pretraining and tuning checkpoints
|-- data
| |-- IT_data
| | |-- MosIT_data
| | |-- T+X-T_data # text+[image/audio/video] to text instruction data
| | `-- T-T+X_data # synthesized text to text+[image/audio/video] instruction data
| |-- T_X_pair_data # text-autio pairs data
| | |-- audiocap
| | |-- cc3m
| | `-- webvid
| |-- embed
| `-- prepare_data.py
|-- figures
|-- merge_lora_weights.py
|-- nextgpt
| |-- __init__.py
| |-- constants.py
| |-- conversation.py
| |-- dataset
| | |-- __init__.py
| | |-- audio_processor.py
| | |-- base_dataset.py
| | |-- catalog.py
| | |-- concat_dataset.py
| | |-- dataset_utils.py
| | `-- sampler.py
| |-- mm_utils.py
| |-- model
| | |-- __init__.py
| | |-- apply_delta.py
| | |-- builder.py
| | |-- consolidate.py
| | |-- language_model
| | |-- make_delta.py
| | |-- multimodal_decoder
| | |-- multimodal_encoder
| | |-- multimodal_projector
| | |-- nextgpt_arch.py
| | `-- utils.py
| `-- utils.py
|-- scripts
| |-- finetune.sh
| |-- pretrain_dec.sh
| |-- pretrain_enc.sh
| |-- zero2.json
| |-- zero3.json
| `-- zero3_offload.json
|-- LICENSE.md
|-- README.md
|-- nextgpt_trainer.py
|-- predict.py
|-- preprocess_embeddings.py
|-- requirements.txt
|-- train.py
|-- train_mem.py
`-- training_utils.py
Please first clone the repo and install the required environment, which can be done by running the following commands:
conda env create -n nextgpt python=3.8
conda activate nextgpt
# CUDA 12.1
conda install pytorch==2.1.2 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
git clone https://github.com/NExT-GPT/NExT-GPT.git
cd NExT-GPT
pip install -r requirements.txt
NExT-GPT is trained based on following excellent existing models. Please follow the instructions to prepare the checkpoints.
ImageBind
is the unified image/video/audio encoder. The pre-trained checkpoint can be downloaded from here with version huge. Afterward, put the imagebind_huge.pth file at [.pretrain_ckpt/imagebind].Vicuna:
prepare the pretrained vicuna from [here]. Then put the pre-trained model at [./pretrain_ckpt/vicuna-7b-v1.5/].Image Diffusion
is used to generate images. NExT-GPT uses Stable Diffusion with version v2. (will be automatically downloaded)Audio Diffusion
for producing audio content. NExT-GPT employs AudioLDM with version l-full. (will be automatically downloaded)Video Diffusion
for the video generation. We employ ZeroScope with version v2_576w. (will be automatically downloaded)Please download the following datasets used for model training:
A) T-X pairs data
CC3M of text-image pairs, please follow this instruction [here]. Then put the data at [./data/T-X_pair_data/cc3m].WebVid of text-video pairs, see the [instruction]. The file should be saved at [./data/T-X_pair_data/webvid].AudioCap of text-audio pairs, see the [instruction]. Save the data in [./data/T-X_pair_data/audiocap].B) Instruction data
T+X-T
LLaVA of the visual instruction data, download it from here, and then put it at [./data/IT_data/T+X-T_data/llava].Alpaca of the textual instruction data, download it from here, and then put it at [./data/IT_data/T+X-T_data/alpaca/].VideoChat, download the video instruction data here, and then put it at [./data/IT_data/T+X-T_data/videochat/].Side note:After downloading dataset, please run prepare_data.py to preprocess the dataset.
T-X+T (T2M)
T-X+T instruction datasets (T2M) are saved at [./data/IT_data/T-T+X_data].MosIT
In decoding-side alignment training, we minimize the distance between the representation of signal tokens and captions. To save costs of time and memory, we precompute the text embeddings for image, audio and video captions using the text encoder within the respective diffusion models.
Please run this command before the following training of NExT-GPT, where the produced embedding file will be saved at [./data/embed].
cd ./code/
python preprocess_embeddings.py ../data/T-X_pair_data/cc3m/cc3m_generation.json image ../data/embed/ stabilityai/stable-diffusion-2
Note of arguments:
image, video, and audio;First of all, please refer to the base configuration file [training_utils.py] for the basic system setting of overall modules, and dataset configuration nextgpt/dataset/catalog.py. The whole NExT-GPT training involves 3 steps:
Step-1: Encoding-side LLM-centric Multimodal Alignment. This stage trains the input projection layer while freezing the ImageBind, LLM, output projection layer.
# Encoding-side LLM-centric Multimodal Alignment
bash scripts/pretrain_enc.sh
Step-2: Decoding-side Instruction-following Alignment. This stage trains the output projection layers while freezing the ImageBind, LLM, input projection layers.
# Encoding-side LLM-centric Multimodal Alignment
bash scripts/pretrain_enc.sh
Step-3: Instruction Tuning. This stage instruction-tune 1) the LLM via LoRA, 2) input projection layer and 3) output projection layer on the instruction dataset.
# Encoding-side LLM-centric Multimodal Alignment
bash scripts/pretrain_enc.sh
First, loading the pre-trained NExT-GPT system.
Step-1: load Frozen parameters. Please refer to 3.1 Preparing Pre-trained Checkpoint.
Step-2: load Tunable parameters. Please put the NExT-GPT system at ./checkpoints/nextgpt-v1.5-7b. You may either 1) use the params trained yourselves, or 2) download our checkpoints from Huggingface.
Upon completion of the checkpoint loading, you can run the prediction via:
python predict.py
You can define your own dataset, please refer to the base_dataset.py, and then add the dataset catalog in catalog.py, including the target and parameters.
You can pre-define the model, data, and training parameters in training_utils.py. Please refer the finetune.sh for fine-tuning your own model.
For any questions or feedback, feel free to contact Shengqiong Wu and Hao Fei.
If you find NextGPT useful in your research or applications, please kindly cite:
@inproceedings{wu24next,
title={{NE}x{T}-{GPT}: Any-to-Any Multimodal {LLM}},
author={Wu, Shengqiong and Fei, Hao and Qu, Leigang and Ji, Wei and Chua, Tat-Seng},
booktitle={Proceedings of the International Conference on Machine Learning},
pages = {53366--53397},
year={2024}
}
You may refer to related work that serves as foundations for our framework and code repository,
Vicuna,
ImageBind,
Stable Diffusion,
AudioLDM, and
Zeroscope.
We also partially draw inspirations from
PandaGPT,
GILL,
CoDi,
Video-LLaMA,
LLaVA,
and MiniGPT-4.
Thanks for their wonderful works.
This repository is under BSD 3-Clause License. NExT-GPT is a research project intended for non-commercial use only. One must NOT use the code of NExT-GPT for any illegal, harmful, violent, racist, or sexual purposes. One is strictly prohibited from engaging in any activity that will potentially violate these guidelines. Any potential commercial use of this code should be approved by the authors.