StoryMaker is a personalization solution preserves not only the consistency of faces but also clothing, hairstyles and bodies in the multiple characters scene, enabling the potential to make a story consisting of a series of images.
Visualization of generated images by StoryMaker. First three rows tell a story about a day in the life of a "office worker" and the last two rows tell a story about a movie of "Before Sunrise".
[2024/11/09] We release the training code.
[2024/09/20] We release the technical report.
[2024/09/02] We release the model weights.


You can directly download the model from Huggingface.
If you cannot access to Huggingface, you can use hf-mirror to download models.
export HF_ENDPOINT=https://hf-mirror.comhuggingface-cli download --resume-download RED-AIGC/StoryMaker --local-dir checkpoints --local-dir-use-symlinks False
For face encoder, you need to manually download via this URL to models/buffalo_l as the default link is invalid. Once you have prepared all models, the folder tree should be like:
. ├── models ├── checkpoints/mask.bin ├── pipeline_sdxl_storymaker.py └── README.md
# !pip install opencv-python transformers accelerate insightfaceimport diffusersimport cv2import torchimport numpy as npfrom PIL import Imagefrom insightface.app import FaceAnalysisfrom diffusers import UniPCMultistepSchedulerfrom pipeline_sdxl_storymaker import StableDiffusionXLStoryMakerPipeline# prepare 'buffalo_l' under ./modelsapp = FaceAnalysis(name='buffalo_l', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])app.prepare(ctx_id=0, det_size=(640, 640))# prepare models under ./checkpointsface_adapter = f'./checkpoints/mask.bin'image_encoder_path = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K' # from https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79Kbase_model = 'huaquan/YamerMIX_v11' # from https://huggingface.co/huaquan/YamerMIX_v11pipe = StableDiffusionXLStoryMakerPipeline.from_pretrained(base_model,torch_dtype=torch.float16)pipe.cuda()# load adapterpipe.load_storymaker_adapter(image_encoder_path, face_adapter, scale=0.8, lora_scale=0.8)pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
Then, you can customized your own images
# load an image and maskface_image = Image.open("examples/ldh.png").convert('RGB')mask_image = Image.open("examples/ldh_mask.png").convert('RGB')
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum faceprompt = "a person is taking a selfie, the person is wearing a red hat, and a volcano is in the distance"n_prompt = "bad quality, NSFW, low quality, ugly, disfigured, deformed"generator = torch.Generator(device='cuda').manual_seed(666)for i in range(4):output = pipe(image=face_image, mask_image=mask_image, face_info=face_info,prompt=prompt,negative_prompt=n_prompt,ip_adapter_scale=0.8, lora_scale=0.8,num_inference_steps=25,guidance_scale=7.5,height=1280, width=960,generator=generator,
).images[0]output.save(f'examples/results/ldh666_new_{i}.jpg')Our work is highly inspired by IP-Adapter and InstantID. Thanks for their great works!
Thanks Yamer for developing YamerMIX, we use it as base model in our demo.