
قاعدة بيانات متجه سهلة الاستخدام في يديك.
حزمة flechasdb هي المكتبة الأساسية لنظام Flechasdb المكتوب في Rust.
يهدف نظام FlechasDB إلى أن يكون قاعدة بيانات متجه تتناسب تمامًا مع البيئات بدون خادم. عقيدة نظام Flechasdb بسيط ؛ لا يتطلب أي خادم مخصص يعمل باستمرار .
*: مقدمة من حزمة أخرى flechasdb-s3 .
لا يوجد قفص منشور حتى الآن. الرجاء إضافة السطر التالي إلى ملف Cargo.toml الخاص بك:
[ dependencies ]
flechasdb = { git = " https://github.com/codemonger-io/flechasdb.git " }فيما يلي exmple من بناء قاعدة بيانات متجه من المتجهات التي تم إنشاؤها عشوائيًا.
use rand :: Rng ;
use flechasdb :: db :: build :: {
DatabaseBuilder ,
proto :: serialize_database ,
} ;
use flechasdb :: io :: LocalFileSystem ;
use flechasdb :: vector :: BlockVectorSet ;
fn main ( ) {
const M : usize = 100000 ; // number of vectors
const N : usize = 1536 ; // vector size
const D : usize = 12 ; // number of subvector divisions
const P : usize = 100 ; // number of partitions
const C : usize = 256 ; // number of clusters for product quantization
let time = std :: time :: Instant :: now ( ) ;
let mut data : Vec < f32 > = Vec :: with_capacity ( M * N ) ;
unsafe { data . set_len ( M * N ) ; }
let mut rng = rand :: thread_rng ( ) ;
rng . fill ( & mut data [ .. ] ) ;
let vs = BlockVectorSet :: chunk ( data , N . try_into ( ) . unwrap ( ) ) . unwrap ( ) ;
println ! ( "prepared data in {} s" , time . elapsed ( ) . as_secs_f32 ( ) ) ;
let time = std :: time :: Instant :: now ( ) ;
let mut db = DatabaseBuilder :: new ( vs )
. with_partitions ( P . try_into ( ) . unwrap ( ) )
. with_divisions ( D . try_into ( ) . unwrap ( ) )
. with_clusters ( C . try_into ( ) . unwrap ( ) )
. build ( )
. unwrap ( ) ;
println ! ( "built database in {} s" , time . elapsed ( ) . as_secs_f32 ( ) ) ;
for i in 0 .. M {
db . set_attribute_at ( i , ( "datum_id" , i as u64 ) ) . unwrap ( ) ;
}
let time = std :: time :: Instant :: now ( ) ;
serialize_database ( & db , & mut LocalFileSystem :: new ( "testdb" ) ) . unwrap ( ) ;
println ! ( "serialized database in {} s" , time . elapsed ( ) . as_secs_f32 ( ) ) ;
} يمكنك العثور على المثال الكامل في مجلد examples/build-random .
لمعلوماتك: استغرق الأمر بعض الوقت على الجهاز الخاص بي (Apple M1 Pro ، 32GB RAM ، 1TB SSD).
prepared data in 0.9123601 s
built database in 906.51526 s
serialized database in 0.14329213 s
فيما يلي مثال على تحميل قاعدة بيانات المتجهات والاستعلام عن متجه تم إنشاؤه عشوائيًا لجيران K-Nearest (K-NN).
use rand :: Rng ;
use std :: env :: args ;
use std :: path :: Path ;
use flechasdb :: db :: stored :: { Database , LoadDatabase } ;
use flechasdb :: io :: LocalFileSystem ;
fn main ( ) {
const K : usize = 10 ; // k-nearest neighbors
const NPROBE : usize = 5 ; // number of partitions to query
let time = std :: time :: Instant :: now ( ) ;
let db_path = args ( ) . nth ( 1 ) . expect ( "no db path given" ) ;
let db_path = Path :: new ( & db_path ) ;
let db = Database :: < f32 , _ > :: load_database (
LocalFileSystem :: new ( db_path . parent ( ) . unwrap ( ) ) ,
db_path . file_name ( ) . unwrap ( ) . to_str ( ) . unwrap ( ) ,
) . unwrap ( ) ;
println ! ( "loaded database in {} s" , time . elapsed ( ) . as_secs_f32 ( ) ) ;
let mut qv : Vec < f32 > = Vec :: with_capacity ( db . vector_size ( ) ) ;
unsafe { qv . set_len ( db . vector_size ( ) ) ; }
let mut rng = rand :: thread_rng ( ) ;
rng . fill ( & mut qv [ .. ] ) ;
for r in 0 .. 2 { // second round should run faster
let time = std :: time :: Instant :: now ( ) ;
let results = db . query (
& qv ,
K . try_into ( ) . unwrap ( ) ,
NPROBE . try_into ( ) . unwrap ( ) ,
) . unwrap ( ) ;
println ! ( "[{}] queried k-NN in {} s" , r , time . elapsed ( ) . as_secs_f32 ( ) ) ;
let time = std :: time :: Instant :: now ( ) ;
for ( i , result ) in results . into_iter ( ) . enumerate ( ) {
// getting attributes will incur additional disk reads
let attr = result . get_attribute ( "datum_id" ) . unwrap ( ) ;
println ! (
" t {}: partition={}, approx. distance²={}, datum_id={:?}" ,
i ,
result . partition_index ,
result . squared_distance ,
attr ,
) ;
}
println ! (
"[{}] printed results in {} s" ,
r ,
time . elapsed ( ) . as_secs_f32 ( ) ,
) ;
}
} يمكنك العثور على مثال كامل في مجلد examples/query-sync .
FYI: مخرجات على جهاز My Machine (Apple M1 Pro ، ذاكرة الوصول العشوائي 32 جيجابايت ، 1 تيرابايت SSD):
loaded database in 0.000142083 s
[0] queried k-NN in 0.0078015 s
0: partition=95, approx. distance²=126.23533, datum_id=Some(Uint64(90884))
1: partition=29, approx. distance²=127.76597, datum_id=Some(Uint64(30864))
2: partition=95, approx. distance²=127.80611, datum_id=Some(Uint64(75236))
3: partition=56, approx. distance²=127.808174, datum_id=Some(Uint64(27890))
4: partition=25, approx. distance²=127.85459, datum_id=Some(Uint64(16417))
5: partition=95, approx. distance²=127.977425, datum_id=Some(Uint64(70910))
6: partition=25, approx. distance²=128.06209, datum_id=Some(Uint64(3237))
7: partition=95, approx. distance²=128.22603, datum_id=Some(Uint64(41942))
8: partition=79, approx. distance²=128.26906, datum_id=Some(Uint64(89799))
9: partition=25, approx. distance²=128.27995, datum_id=Some(Uint64(6593))
[0] printed results in 0.003392833 s
[1] queried k-NN in 0.001475625 s
0: partition=95, approx. distance²=126.23533, datum_id=Some(Uint64(90884))
1: partition=29, approx. distance²=127.76597, datum_id=Some(Uint64(30864))
2: partition=95, approx. distance²=127.80611, datum_id=Some(Uint64(75236))
3: partition=56, approx. distance²=127.808174, datum_id=Some(Uint64(27890))
4: partition=25, approx. distance²=127.85459, datum_id=Some(Uint64(16417))
5: partition=95, approx. distance²=127.977425, datum_id=Some(Uint64(70910))
6: partition=25, approx. distance²=128.06209, datum_id=Some(Uint64(3237))
7: partition=95, approx. distance²=128.22603, datum_id=Some(Uint64(41942))
8: partition=79, approx. distance²=128.26906, datum_id=Some(Uint64(89799))
9: partition=25, approx. distance²=128.27995, datum_id=Some(Uint64(6593))
[1] printed results in 0.0000215 s
فيما يلي مثال على تحميل قاعدة بيانات متجه بشكل غير متزامن والاستعلام عن متجه تم إنشاؤه عشوائيًا لـ K-NN.
use rand :: Rng ;
use std :: env :: args ;
use std :: path :: Path ;
use flechasdb :: asyncdb :: io :: LocalFileSystem ;
use flechasdb :: asyncdb :: stored :: { Database , LoadDatabase } ;
# [ tokio :: main ]
async fn main ( ) {
const K : usize = 10 ; // k-nearest neighbors
const NPROBE : usize = 5 ; // number of partitions to search
let time = std :: time :: Instant :: now ( ) ;
let db_path = args ( ) . nth ( 1 ) . expect ( "missing db path" ) ;
let db_path = Path :: new ( & db_path ) ;
let db = Database :: < f32 , _ > :: load_database (
LocalFileSystem :: new ( db_path . parent ( ) . unwrap ( ) ) ,
db_path . file_name ( ) . unwrap ( ) . to_str ( ) . unwrap ( ) ,
) . await . unwrap ( ) ;
println ! ( "loaded database in {} s" , time . elapsed ( ) . as_secs_f32 ( ) ) ;
let mut qv = Vec :: with_capacity ( db . vector_size ( ) ) ;
unsafe { qv . set_len ( db . vector_size ( ) ) ; }
let mut rng = rand :: thread_rng ( ) ;
rng . fill ( & mut qv [ .. ] ) ;
for r in 0 .. 2 { // second round should run faster
let time = std :: time :: Instant :: now ( ) ;
let results = db . query (
& qv ,
K . try_into ( ) . unwrap ( ) ,
NPROBE . try_into ( ) . unwrap ( ) ,
) . await . unwrap ( ) ;
println ! ( "[{}] queried k-NN in {} s" , r , time . elapsed ( ) . as_secs_f32 ( ) ) ;
let time = std :: time :: Instant :: now ( ) ;
for ( i , result ) in results . into_iter ( ) . enumerate ( ) {
// getting attributes will incur additional disk reads
let attr = result . get_attribute ( "datum_id" ) . await . unwrap ( ) ;
println ! (
" t {}: partition={}, approx. distance²={}, datum_id={:?}" ,
i ,
result . partition_index ,
result . squared_distance ,
attr ,
) ;
}
println ! (
"[{}] printed results in {} s" ,
r ,
time . elapsed ( ) . as_secs_f32 ( ) ,
) ;
}
} المثال الكامل هو في مجلد examples/query-async .
FYI: مخرجات على جهاز My Machine (Apple M1 Pro ، ذاكرة الوصول العشوائي 32 جيجابايت ، 1 تيرابايت SSD):
loaded database in 0.000170959 s
[0] queried k-NN in 0.008041208 s
0: partition=67, approx. distance²=128.50703, datum_id=Some(Uint64(69632))
1: partition=9, approx. distance²=129.98079, datum_id=Some(Uint64(73093))
2: partition=9, approx. distance²=130.10867, datum_id=Some(Uint64(7536))
3: partition=20, approx. distance²=130.29523, datum_id=Some(Uint64(67750))
4: partition=67, approx. distance²=130.71976, datum_id=Some(Uint64(77054))
5: partition=9, approx. distance²=130.80556, datum_id=Some(Uint64(93180))
6: partition=9, approx. distance²=130.90681, datum_id=Some(Uint64(22473))
7: partition=9, approx. distance²=130.94006, datum_id=Some(Uint64(40167))
8: partition=67, approx. distance²=130.9795, datum_id=Some(Uint64(8590))
9: partition=9, approx. distance²=131.03018, datum_id=Some(Uint64(53138))
[0] printed results in 0.00194175 s
[1] queried k-NN in 0.000789417 s
0: partition=67, approx. distance²=128.50703, datum_id=Some(Uint64(69632))
1: partition=9, approx. distance²=129.98079, datum_id=Some(Uint64(73093))
2: partition=9, approx. distance²=130.10867, datum_id=Some(Uint64(7536))
3: partition=20, approx. distance²=130.29523, datum_id=Some(Uint64(67750))
4: partition=67, approx. distance²=130.71976, datum_id=Some(Uint64(77054))
5: partition=9, approx. distance²=130.80556, datum_id=Some(Uint64(93180))
6: partition=9, approx. distance²=130.90681, datum_id=Some(Uint64(22473))
7: partition=9, approx. distance²=130.94006, datum_id=Some(Uint64(40167))
8: partition=67, approx. distance²=130.9795, datum_id=Some(Uint64(8590))
9: partition=9, approx. distance²=131.03018, datum_id=Some(Uint64(53138))
[1] printed results in 0.000011084 s
هناك معيار حول بيانات أكثر واقعية.
https://codemonger-io.github.io/flechasdb/api/flechasdb/
flechasdb تنفذ IndexIVFPQ الموصوفة في هذه المقالة.
يقوم flechasdb بتنفيذ K-means ++ لتهيئة Centroids لتجميع näive K-means.
TBD
cargo buildcargo doc --lib --no-deps --releaseكوز الصنوبر
قاعدة بيانات المتجهات المدارة بالكامل.
ميلفوس
قاعدة بيانات متجه مفتوح المصدر مع الكثير من الميزات.
locationB
واحدة من ميزاتها هي أيضا خادم ، وكتابة جوهرها في الصدأ!
معهد ماساتشوستس للتكنولوجيا
تم ترخيص المواد التالية عن طريق Codemonger بموجب CC BY-SA 4.0: